当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.M为AB的中点(1)求证:BC//平面PMD(2...
题目
题型:不详难度:来源:
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
M为AB的中点

(1)求证:BC//平面PMD
(2)求证:PC⊥BC;                                
(3)求点A到平面PBC的距离.
答案
(1)因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC.
由∠BCD=900,得BC⊥DC.又
平面PCD,平面PCD,所以BC⊥平面PCD.
因为平面PCD,所以PC⊥BC.
(2)如图,连结AC.设点A到平面PBC的距离h.

因为AB∥DC,∠BCD=900,所以∠ABC=900.
从而由AB=2,BC=1,得的面积.
由PD⊥平面ABCD及PD=1,得三棱锥的体积
因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC. 又PD=DC=1,所以.
由PC⊥BC,BC=1,得的面积.由,得.
因此点A到平面PBC的距离为.
解析

核心考点
试题【如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.M为AB的中点(1)求证:BC//平面PMD(2】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
(本小题满分13分)
如图,在六面体中,平面∥平面平面,,,且,

(1)求证:平面平面
(2)求证:∥平面
(3)求三棱锥的体积.
题型:不详难度:| 查看答案
(本题满分14分)右图为一简单组合体,其底面为正方形,平面

(1)求证:平面;(2)求与平面所成角的大小.

题型:不详难度:| 查看答案
下列命题中
①若直线上有无数点不在平面内,则
②若直线与平面平行,则与平面内任意一条直线平行
③若直线与平面平行,则与平面内的任意一条直线都没有公共点
④若直线平行于内无数条直线,则
⑤如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行
其中正确的个数是          (    )
A.0    B.1    C.2   D.3

题型:不详难度:| 查看答案
如图,在四棱锥中,底面为正方形,侧棱底面,点的中点。
(Ⅰ)求证:平面
(Ⅱ)求点到平面的距离。

题型:不详难度:| 查看答案
(1)证明直线和平面垂直的判定定理,即已知:如图1, 求证:
(2)请用直线和平面垂直的判定定理证明:如果一条直线垂直于两个平行平面中的一个,那么它也垂直于另一个平面,即
已知:如图2, 求证:


题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.