当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,...
题目
题型:不详难度:来源:
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.

(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.
答案
(Ⅰ)见解析(Ⅱ)
解析
本题考查平面与平面垂直的证明,求实数的取值.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化,合理地运用向量法进行解题.
(Ⅰ)法一:由AD∥BC,BC= AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知QB⊥AD.由平面PAD⊥平面ABCD,知BQ⊥平面PAD.由此能够证明平面PQB⊥平面PAD.
法二:由AD∥BC,BC=
AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知∠AQB=90°.由PA=PD,知PQ⊥AD,故AD⊥平面PBQ.由此证明平面PQB⊥平面PAD.
(Ⅱ)由PA=PD,Q为AD的中点,知PQ⊥AD.由平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,知PQ⊥平面ABCD.以Q为原点建立空间直角坐标系,利用向量法能够求出t=3.
解:(I)方法一∵AD // BC,BC=AD,Q为AD的中点,∴四边形BCDQ为平行四边形,∴CD // BQ .    
∵∠ADC=90°   ∴∠AQB=90° 即QB⊥AD.又
∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD, 
∴BQ⊥平面PAD.∵BQ平面PQB,∴平面PQB⊥平面PAD.  ……………………6分
方法二:AD // BC,BC=AD,Q为AD的中点, ∴ 四边形BCDQ为平行四边形,∴CD // BQ .
∵ ∠ADC=90°   ∴∠AQB=90°. ∵ PA=PD, ∴PQ⊥AD.
∵ PQ∩BQ=Q,∴AD⊥平面PBQ. ∵ AD平面PAD,∴平面PQB⊥平面PAD.…………6分
(II)∵PA=PD,Q为AD的中点, ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如图,以Q为原点建立空间直角坐标系.

则平面BQC的法向量为


,则

,  
  ………………9分
在平面MBQ中,
∴ 平面MBQ法向量为.       
∵二面角M-BQ-C为30°,
.      …………………………12分
核心考点
试题【如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如果直线l,m与平面α、β、γ满足β∩γ=l,,,那么必有(  )
A.m//β且l⊥mB.α//β且α⊥γ
C.α⊥β且m//γ   D.α⊥γ且l⊥m

题型:不详难度:| 查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中点,N是BC1的中点.

(1)求证:MN//平面A1B1C1
(2)求二面角B-C1M-C的平面角余弦值的大小.
题型:不详难度:| 查看答案
直四棱柱的底面是菱形,,其侧面展开图是边长为的正方形.分别是侧棱上的动点,

(Ⅰ)证明:
(Ⅱ)在棱上,且,若∥平面,求.
题型:不详难度:| 查看答案
是直线,a,β是两个不同的平面
A.若∥a,∥β,则a∥βB.若∥a,⊥β,则a⊥β
C.若a⊥β,⊥a,则⊥βD.若a⊥β, ∥a,则⊥β

题型:不详难度:| 查看答案
如图,几何体是四棱锥,△为正三角形,.
(1)求证:
(2)若∠,M为线段AE的中点,求证:∥平面.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.