当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=1200,则AB与平面ADC所成角的正弦值为         ...
题目
题型:不详难度:来源:
已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=1200,则AB与平面ADC所成角的正弦值为         
答案
 
解析
根据题意建立直角坐标系,结合△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=1200,得到线面角然后借助于直角三角形得到结论。
核心考点
试题【 已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=1200,则AB与平面ADC所成角的正弦值为         】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图,点P在正方体的面对角线上运动,则下列四个命题:①三棱锥的体积不变; ②∥面; ③; ④面。其中正确的命题的序号是_______________(写出所有你认为正确结论的序号)
题型:不详难度:| 查看答案
(本小题满分12分)在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EF∥AB,FG∥BC,EG∥AC. AB="2EF." 若M是线段AD的中点。求证:GM∥平面ABFE 
 
题型:不详难度:| 查看答案
(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。
题型:不详难度:| 查看答案
(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
 
题型:不详难度:| 查看答案
(本小题满分12分)四棱锥中,底面为矩形,侧面底面

(Ⅰ)证明:
(Ⅱ)设与平面所成的角为
求二面角的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.