当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.(1)求证:⊥EF;(2)求二面角的...
题目
题型:不详难度:来源:
如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.

(1)求证:⊥EF;
(2)求二面角的平面角的余弦值.
答案
(1)见解析;(2).
解析

试题分析:(1)先根据正方形的特征得到 ,再根据点的重合得到 ,由直线与平面垂直的判定定理可知, ,再由直线与平面垂直的性质定理得到 ;(2)先取的中点,连,由等腰三角形底边上的三线合一以及勾股定理证明,所以是二面角的平面角,再根据已知的边的长度
试题解析:(1)证明:∵是正方形,
,        ..2分
,       .3分
,              . 4分
,             5分
,            .6分
.                      7分
(2)取的中点,连,如图所示:

则在中,∵
,                .8分

,                .. 9分
所以是二面角的平面角,         10分
中,
,∴,         ..11分
,∴,又,∴,   .12分
,          .13分
所以二面角的平面角的余弦值是.        14分
核心考点
试题【如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.(1)求证:⊥EF;(2)求二面角的】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于

(1)求证:⊥EF;
(2)求
题型:不详难度:| 查看答案
已知m,n是两条不同的直线,α,β是两个不同的平面,有下列四个命题:
①若m∥n,n⊂α,则m∥α;
②若m⊥n,m⊥α,nα,则n∥α;
③若α⊥β,m⊥α,n⊥β,则m⊥n;
④若m,n是异面直线,m⊂α,n⊂β,m∥β,则n∥α.
其中正确的命题有(  )
A.①②B.②③C.③④D.②④

题型:不详难度:| 查看答案
已知三条不重合的直线,两个不重合的平面,有下列命题:
①若,且,则
②若,且,则
③若,则
④若,则
其中真命题的个数是(    )
A.4B.3 C.2D.1

题型:不详难度:| 查看答案
如图在棱长均为2的正四棱锥中,点中点,则下列命题正确的是(   )
A.,且直线到面距离为
B.,且直线到面距离为
C.不平行于面,且与平面所成角大于
D.不平行于面,且与平面所成角小于

题型:不详难度:| 查看答案
如图,在直三棱柱中,,点分别为的中点.

(1)证明:平面
(2)平面MNC与平面MAC夹角的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.