当前位置:高中试题 > 数学试题 > 向量与空间位置关系 > 在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.(1)求证:;(2)求证:平面;(3)求二面角的余弦值....
题目
题型:不详难度:来源:
在四棱锥中,平面是正三角形,的交点恰好是中点,又,点在线段上,且

(1)求证:
(2)求证:平面
(3)求二面角的余弦值.
答案
(1)详见解析;(2)详见解析;(3)
解析

试题分析:(1)线线垂直是通过线面垂直证明,由已知,从而平面,进而可证明;(2)要证明直线和平面平行,只需在平面内找一条直线与之平行即可,该题中通过计算得,从而说明,进而证明;(3)二面角的求法:根据已知条件选三条两两垂直的直线,分别作为轴,建立空间直角坐标系,表示相关点的坐标,并求二面角两个半平面的法向量,再求法向量的夹角,通过观察二面角是锐二面角还是钝二面角,决定二面角余弦值的正负,该题中,可选的方向为轴的正方向,而且面的法向量就是,故只需求面的法向量即可.
试题解析:(I) 因为是正三角形,中点,所以,即,又因为平面,又,所以平面
平面,所以
(Ⅱ)在正三角形中,, 在中,因为中点,,所以
,所以,所以,在等腰直角三角形中,,所以,所以,又平面平面,所以平面

(Ⅲ)因为,所以,分别以轴, 轴, 轴建立如图的空间直角坐标系,所以
由(Ⅱ)可知,为平面的法向量 ,
设平面的一个法向量为,则,即,令则平面的一个法向量为, 设二面角的大小为, 则          
所以二面角余弦值为
核心考点
试题【在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.(1)求证:;(2)求证:平面;(3)求二面角的余弦值.】;主要考察你对向量与空间位置关系等知识点的理解。[详细]
举一反三
若关于直线与平面,有下列四个命题:
①若,,且,则
②若,,且,则
③若,,且,则
④若,,且,则
其中真命题的序号(  )
A.①②B.③④ C.②③D.①④

题型:不详难度:| 查看答案
下列命题中假命题是(     )
A.垂直于同一条直线的两条直线相互垂直
B.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直
D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行

题型:不详难度:| 查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求异面直线所成角的余弦值.
题型:不详难度:| 查看答案
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:
(2)求二面角的余弦值.
题型:不详难度:| 查看答案
设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是(   )
A.若m∥α,n∥α,则m∥n
B.若m∥α,m∥β,则α∥β
C.若m∥n,m⊥α,则n⊥α
D.若m∥α,α⊥β,则m⊥β

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.