当前位置:高中试题 > 数学试题 > 平面向量模和夹角的坐标表示 > 若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为 ______°....
题目
题型:北京模拟难度:来源:
|


a
|=1,|


b
|=2,


c
=


a
+


b
,且


c


a
,则向量


a


b
的夹角为 ______°.
答案


c
=


a
+


b
,且


c


a



c


a
=0

(


a
+


b
)•


a
=0

展开得:


a


a
+


a


b
=0

整理得:1+1×2×cos< 


a
 ,


b
=0
解得:cos<


a


b
>=-
1
2

故向量


a


b
的夹角为120°
核心考点
试题【若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为 ______°.】;主要考察你对平面向量模和夹角的坐标表示等知识点的理解。[详细]
举一反三
已知|


a
|=1,|


b
|=6,


a•
(


b
-


a
)=2
,则向量


a
与向量


b
的夹角是(  )
A.
π
6
B.
π
4
C.
π
3
D.
π
2
题型:重庆难度:| 查看答案
已知向量


a
=(1,0)与向量


b
=(-1,


3
),则向量


a


b
的夹角为(  )
A.
π
6
B.
π
3
C.
3
D.
6
题型:不详难度:| 查看答案
在平面直角坐标系中,O为坐标原点,已知


p
=(-1,2)
,A(8,0),B(n,t),C(ksinθ,t),其中0≤θ≤
π
2

(1)若


AB


p
,且|


AB
|=


5
|


OA
|
,求向量


OB

(2)若向量


AC


p
,当k为大于4的某个常数时,tsinθ取最大值4,求此时


OA


OC
夹角的正切值.
题型:不详难度:| 查看答案
设A,B,C,D是空间不共面的四点,且满足


AB


AC
=0


AC


AD
=0


AB


AD
=0
,则△BCD是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.不确定
题型:不详难度:| 查看答案
已知


a


b
=-12


2
,|


a
|=4,


a


b
的夹角为135°,则|


b
|=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.