当前位置:高中试题 > 数学试题 > 平面向量数量积的运算 > 已知P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则的最大值为A.4B.0C.-12D.12...
题目
题型:湖北省模拟题难度:来源:
已知P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则的最大值为
A.4
B.0
C.-12
D.12
答案
核心考点
试题【已知P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则的最大值为A.4B.0C.-12D.12】;主要考察你对平面向量数量积的运算等知识点的理解。[详细]
举一反三
已知向量a=(1,2),b=(2,-2),
(1)设c=4a+b,求(b·c)a
(2)若aba垂直,求λ的值;
(3)求向量ab方向上的投影.
题型:同步题难度:| 查看答案
已知向量m=(sin,1),n=(cos,cos2),
(1)若m·n=1,求cos(-x)的值;
(2)记f(x)=m·n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
题型:同步题难度:| 查看答案
对正整数n,设抛物线y2=2(2n+1)x,过P(2n,0)任作直线l交抛物线于An,Bn两点,则数列的前n项和公式是(    )。
题型:辽宁省期末题难度:| 查看答案
已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足,点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足

(1)设x为点P的横坐标,证明
(2)求点T的轨迹C的方程;
(3)试问:在点T的轨迹C上,是否存在点M, 使△F1MF2的面积S=b2。若存在,求∠F1MF2的正切值;若不存在,请说明理由。
题型:辽宁省高考真题难度:| 查看答案
若点O和点F(-2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为[     ]
A.
B.
C.
D.
题型:期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.