题目
题型:不详难度:来源:
a |
. |
b |
a |
. |
b |
. |
b |
①向量
a |
. |
b |
. |
b |
a |
. |
b |
. |
b |
a |
. |
b |
a |
a |
. |
b |
答案
a |
. |
b |
a |
. |
b |
. |
b |
a |
. |
b |
a |
b |
且向量
a |
a |
. |
b |
②2|
. |
b |
a |
. |
b |
. |
b |
a |
b |
a |
b |
b |
a |
a |
b |
而由|
a |
. |
b |
. |
b |
a |
. |
b |
. |
b |
. |
b |
a |
a |
a |
b |
b |
a |
a |
b |
故②正确.
③|2
. |
b |
a |
. |
b |
b |
a |
a |
b |
b |
a |
b |
a |
等价于 4|
a |
b |
a |
b |
a |
b |
a |
b |
a |
而 2|
b |
a |
b |
a |
b |
a |
b |
a |
④|2
a |
a |
. |
b |
a |
a |
a |
b |
b |
a |
b |
b |
等价于 4|
a |
a |
b |
b |
故答案为 3.
核心考点
试题【若非零不共线向量a、.b满足|a-.b|=|.b|,则下列结论正确的个数是______.①向量a、.b的夹角恒为锐角; ②2|.b|2>a•.b; ③|2.】;主要考察你对平面向量数量积的意义等知识点的理解。[详细]
举一反三
a |
b |
a |
b |
c |
a |
b |
d |
a |
b |
c |
d |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
题型:
|sinθ,如果|
|=4,|
|=3,
•
=-2,则|
×
|=______.
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
b |
a |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |