当前位置:高中试题 > 数学试题 > 四种命题的概念 > 已知数列{an}单调递增,且各项非负,对于正整数K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的项,则称数列{an}为“K项可减数列”.(1)已...
题目
题型:盐城二模难度:来源:
已知数列{an}单调递增,且各项非负,对于正整数K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的项,则称数列{an}为“K项可减数列”.
(1)已知数列{an}是首项为2,公比为2的等比数列,且数列{an-2}是“K项可减数列”,试确定K的最大值;
(2)求证:若数列{an}是“K项可减数列”,则其前n项的和Sn=
n
2
an(n=1,2,…,K)

(3)已知{an}是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,并说明理由.
答案
(1)设cn=an-2=2n-2,则c1=0,c2=2,c3=6,
易得c1-c1=c1,c2-c1=c2,c2-c2=c1,即数列{cn}一定是“2项可减数列”,
但因为c3-c2≠c1,c3-c2≠c2,c3-c2≠c3,所以K的最大值为2. …(5分)
(2)因为数列{an}是“K项可减数列”,
所以ak-at(t=1,2…,K)必定是数列{an}中的项,…(7分)
而{an}是递增数列,故ak-ak<ak-ak-1<ak-ak-2<…<ak-a1
所以必有ak-ak=a1,ak-ak-1=a2,ak-ak-2=a3,…,ak-a1=ak
则a1+a2+a3+…+ak=(ak-ak)+(ak-ak-1)+(ak-ak-2)+…+(ak-a1)=Kak-(a1+a2+a3+…+ak),
所以SK=KaK-SK,即SK=
K
2
aK

又由定义知,数列{an}也是“t项可减数列”(t=1,2,…,K-1),
所以Sn=
n
2
an(n=1,2,…,K)
.                         …(10分)
(3)(2)的逆命题为:
已知数列{an}为各项非负的递增数列,若其前n项的和满足Sn=
n
2
an(n=1,2,…,K)

则该数列一定是“K项可减数列”,该逆命题为真命题.   …(12分)
理由如下:因为Sn=
n
2
an(1
≤n≤K),所以当n≥2时,Sn-1=
n-1
2
an-1

两式相减,得an=Sn-Sn-1=
n
2
an
-
n-1
2
an-1
,即(n-2)an=(n-1)an-1(n≥2)(*)
则当n≥3时,有(n-3)an-1=(n-2)an-2(**)
由(**)-(*),得an+an-2=2an-1(n≥3),
a1=
1
2
a1
,所以a1=0,故数列a1,a2,…,aK是首项为0的递增等差数列.
设公差为d(d>0),则an=(n-1)d,(n=1,2,…,K),
对于任意的i,j(1≤i≤j≤K),aj-ai=(j-i)d=aj-i+1
因为1≤1≤j-i+1≤K,所以aj-ai仍是a1,a2,…,aK中的项,
故数列{an}是“K项可减数列”.                      …(16分)
核心考点
试题【已知数列{an}单调递增,且各项非负,对于正整数K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的项,则称数列{an}为“K项可减数列”.(1)已】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
下列四种说法中,错误的个数是(  )
①集合A={0,1}的子集有3个;
②命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.
③命题“∀x∈R,均有x2-3x-2≥0”的否定是:“∃x∈R,使得x2-3x-2≤0”
④“命题p∨q为真”是“命题p∧q为真”的必要不充分条件.
A.0个B.1个C.2个D.3个
题型:眉山一模难度:| 查看答案
下列说法正确的是(  )
A.命题“若lga>lgb,则a>b”的逆命题是真命题
B.命题“∀x∈R,2x>0”的否定是“∃x0∈R,2x0≤0”
C.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题
D.“x2=1”是“x=1”的充分不必要条件
题型:不详难度:| 查看答案
已知命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分不必要条件;命题q:已知A,B,C是锐角三角形ABC的三个内角;向量


m
=(1+sinA,1+cosA),


n
=(1+sinB,-1-cosB)
,则


m


n
的夹角是锐角.则(  )
A.p假q真B.P且q为真C.p真q假D.p或q为假
题型:不详难度:| 查看答案
给出下列命题:
①函数f(x)=sinx+|sinx|(x∈R)的最小正周期是2π;
②已知函数f(x)=





acosx,x≥0
x2-1,x<0
在x=0处连续,则a=-1;
③函数y=f(x)与y=1-f-1(1-x)的图象关于直线x+y+1=0对称;
④将函数y=tan(ωx+
π
4
)(ω>0)
的图象按向量


a
=(
π
6
,0)
平移后,与函数y=tan(ωx+
π
6
)
的图象重合,则ω的最小值为
1
6
,你认为正确的命题有:______.
题型:不详难度:| 查看答案
以下四个命题:
①PA、PB是平面α的两条长度相等的斜线段,则它们在平面α内的射影的长度必相等;
②平面α内的两直线l1、l2,若l1、l2均与平面β平行,则αβ;
③若平面α内有无数个点到平面β的距离相等,则αβ;
④α、β为两相交平面,且α不垂直于β,α内有一定直线l,则在平面β内有无数条直线与l垂直.
其中正确的命题的个数是(  )
A.1个B.2个C.3个D.4个
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.