当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮...
题目
题型:高考真题难度:来源:
甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。
(1) 求甲获胜的概率;
(2) 求投篮结束时甲的投篮次数ξ的分布列与期望。
答案
解:设Ak,Bk分别表示甲、乙在第k次投篮投中,
则P(Ak)=,P(Bk)=(k=1,2,3)
(1) 记“甲获胜”为事件C,则P(C)=P(A1)+P()+P()=+=
(2) 投篮结束时甲的投篮次数?的可能值为1,2,3
P(ξ=1)=P(A1)+P()=
P(ξ=2)=P()+P()==
P(ξ=3)=P()==
∴ξ的分布列为:

期望Eξ=1×+2×+3×=
核心考点
试题【甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
学校推荐学生参加某著名高校的自主招生考试,经过申请﹣﹣资格认定﹣﹣初选,已确定甲班有3名同学入围,还有包括乙班在内的四个班各有2名同学入围,若要从这些入围的同学中随机选出5名同学参加该校的自主招生考试.
(1)求在已知甲班恰有2名同学入选的条件下乙班有同学入选的概率;
(2)求甲班入选人数X的期望;
(3)求有且仅有一个班的入选人数超过1人的概率.
题型:月考题难度:| 查看答案
甲、乙、丙三人独立完成某项任务的概率分别为.且他们是否完成任务互不影响.
(Ⅰ)若,设甲、乙、丙三人中能完成任务人数为X,求X的分布列和数学期望EX;(Ⅱ)若三人中只有丙完成了任务的概率为,求p的值.
题型:期末题难度:| 查看答案
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为X,求X的分布列和数学期望.
题型:期末题难度:| 查看答案
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,设O为坐标原点,点P的坐标为(x﹣2,x﹣y),记ξ=.(I)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;
(II)求随机变量ξ的分布列和数学期望.
题型:月考题难度:| 查看答案
有A、B两个口袋,A袋中有6张卡片,其中1张写0,2张写1,3张写有2;B袋中7张卡片,其中4张写有0,1张写有1,2张写有2,从A袋中取1张卡片,B袋中取2张卡片,共3张卡片,求:
(1)取出的3张卡片都写0的概率;
(2)取出的3张卡片数字之积是4的概率;
(3)取出的3张卡片数字之积的数字期望.
题型:同步题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.