当前位置:高中试题 > 数学试题 > 离散型随机变量及其分布列 > 盒内含有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球,规定取出1个红色球得1分,取出一个白球得0分,取出一个黑球得-1分,现从盒内一次性取3个球.(...
题目
题型:不详难度:来源:
盒内含有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球,规定取出1个红色球得1分,取出一个白球得0分,取出一个黑球得-1分,现从盒内一次性取3个球.
(1)求取出的三个球得分之和恰为1分的概率
(2)设ξ为取出的3个球中白色球的个数,求ξ分布列和数学期望.
答案
(1)记“取出1个红色球,2个白色球”为事件A,“取出2个红色球,1个黑色球”为事件B,
则P(A+B)=P(A)+P(B)=
C12
C23
C39
+
C22
C14
C39
=
5
42

(2)ξ可能的取值为0,1,2,3.
P(ξ=0)=
C36
C39
=
5
21
,P(ξ=1)=
C13
C26
C39
=
15
28
,P(ξ=2)=
C23
C16
C39
=
3
14
,P(ξ=3)=
C33
C39
=
1
84

ξ的分布列为:
核心考点
试题【盒内含有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球,规定取出1个红色球得1分,取出一个白球得0分,取出一个黑球得-1分,现从盒内一次性取3个球.(】;主要考察你对离散型随机变量及其分布列等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
ξ0123
P
5
21
15
28
3
14
1
84
现有甲、乙两个靶,其射手向甲靶射击一次,命中的概率为
3
4
,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为
2
3
,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.
(1)求该射手恰好命中一次的概率;
(2)求该射手的总得分X的分布列.
某旅行社为3个旅游团提供了4条参观园博园的旅游线路,每个旅游团任选其中一条,
(1)求3个旅游团选择3条不同的线路的概率;
(2)求恰有2条线路没有被选择的概率;
(3)求选择甲线路的旅游团数的分布列和数学期望.
体育课进行篮球投篮达标测试,规定:每位同学有5次投篮机会,若投中3次则“达标”;为节省测试时间,同时规定:①若投篮不到5次已达标,则停止投篮;②投篮过程中,若已有3次未中,则停止投篮.同学甲投篮命中率为
2
3
,且每次投篮互不影响.
(Ⅰ)求同学甲恰好投4次达标的概率;
(Ⅱ)设同学甲投篮次数为X,求X的分布列.
生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
题型:不详难度:| 查看答案
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
元件A81240328
元件B71840296
设随机变量ξ~N(μ,σ2),对非负数常数k,则P(|ξ-μ|≤kσ)的值是(  )
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.只与k有关B.只与μ有关
C.只与σ有关D.只与μ和σ有关