当前位置:高中试题 > 数学试题 > 离散型随机变量及其分布列 > 福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中...
题目
题型:不详难度:来源:
福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为,获得50元奖金的概率为.
(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;
(II)为了能够筹得资金资助福利事业, 求的取值范围.
答案
(I)0.75 ; (II)  .
解析

试题分析:第(I) 利用互斥事件的概率公式进行求解 ;第(II)需仔细随机变量的各种取值进行分析,写出对应随机变量的分布列.
试题解析:
(I)设至少一张中奖为事件
                                      4分
(II) 设福彩中心卖出一张彩票可能获得的资金为
可以取                                 6分
的分布列为










                                                                  8分
所以的期望为
                         11分
所以当 时,即                          12分
所以当时,福彩中心可以获取资金资助福利事业       13分
核心考点
试题【福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中】;主要考察你对离散型随机变量及其分布列等知识点的理解。[详细]
举一反三
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中
随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:
.
(I)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

题型:不详难度:| 查看答案
已知正方形的边长为2,分别是边的中点.
(1)在正方形内部随机取一点,求满足的概率;
(2)从这八个点中,随机选取两个点,记这两个点之间的距离为,求随机变量的分布列与数学期望
题型:不详难度:| 查看答案
某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:
答对题目个数
0
1
2
3
人数
5
10
20
15
根据上表信息解答以下问题:
(Ⅰ)从50名学生中任选两人,求两人答对题目个数之和为4或5的概率;
(Ⅱ)从50名学生中任选两人,用X表示这两名学生答对题目个数之差的绝对值,求随机变量X的分布列及数学期望EX.
题型:不详难度:| 查看答案
(本小题满分12分)甲、乙等名同学参加某高校的自主招生面试,已知采用抽签的方式随机确定各考生的面试顺序(序号为).
(Ⅰ)求甲、乙两考生的面试序号至少有一个为奇数的概率;
(Ⅱ)记在甲、乙两考生之间参加面试的考生人数为,求随机变量的分布列与期望.
题型:不详难度:| 查看答案
为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
76
81
  (1)已知甲厂生产的产品共84件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175且y≥75,该产品为优等品,
①用上述样本数据估计乙厂生产的优等品的数量;
②从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其期望.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.