已知甲盒内有大小相同的2个红球和2个黑球,乙盒内有大小相同的3个红球和3个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为红球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率. |
(I)取出的4个球均为红球的取法为C22×C32=3,所有的取法C42×C62=90,故所求的概率是= (II)取出的4个球中恰有1个红球包含的基本事件是C31×C31+C21×C21×C32=21 故所求的概率是= |
核心考点
试题【已知甲盒内有大小相同的2个红球和2个黑球,乙盒内有大小相同的3个红球和3个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出】;主要考察你对
随机事件的概率等知识点的理解。
[详细]
举一反三
在5张卡片上分别写上数字1,2,3,4,5,然后把它们混合,再任意排成一行,组成5位数,则得到能被2整除的5位数的概率为______. |
某校10名学生组成该校“科技创新周”志愿服务队(简称“科服队”),他们参加活动的有关数据统计如下:
参加活动次数 | 1 | 2 | 3 | 人 数 | 2 | 3 | 5 | 将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x,第二次出现的点数为y.则事件“x+y≤3”的概率为( ) | 一个口袋中装有大小相同的2个白球和3个黑球. (Ⅰ)从中摸出两个球,求两球恰好颜色不同的概率; (Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率. | 有A、B、C、D、E共5个口袋,每个口袋装有大小和质量均相同的4个红球和2个黑球,现每次从其中一个口袋中摸出3个球,规定:若摸出的3个球恰为2个红球和1个黑球,则称为最佳摸球组合. (1)求从口袋A中摸出的3个球为最佳摸球组合的概率; (2)现从每个口袋中摸出3个球,求恰有3个口袋中摸出的球是最佳摸球组合的概率. |
|