当前位置:高中试题 > 数学试题 > 随机事件的概率 > (2009江西卷文)甲、乙、丙、丁个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率...
题目
题型:不详难度:来源:

(2009江西卷文)甲、乙、丙、丁个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为
A.B.C.D.

答案
D
解析
所有可能的比赛分组情况共有种,甲乙相遇的分组情况恰好有6种,故选.           
核心考点
试题【(2009江西卷文)甲、乙、丙、丁个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率】;主要考察你对随机事件的概率等知识点的理解。[详细]
举一反三
有一种掷正方体骰子走跳棋的网络游戏,棋盘上标有第0站,第1站,第2站,…,第100站。一枚棋子开始在第0站,玩家每掷一次骰子,棋子向前跳动一次,若掷出朝上的点数为1或2,则棋子向前跳一站;若掷出其余点数,则棋子向前跳两站。游戏规定:若棋子经过若干次跳动恰跳到第99站,则玩家获胜,游戏结束;若棋子经过若干次跳动最后恰跳到第100站,则玩家失败,游戏结束。设棋子跳到第n站的概率为pn(n∈N,n≤100),可以证明:(2≤n≤100),则每次玩该游戏获胜的概率是(     )
A.B.C.D.

题型:不详难度:| 查看答案
某高三学生打算报名参加某7所高校中4所学校的自主招生考试,其中仅甲、乙两所学校的考试时间相同,因此该学生不能同时报考这两所学校,那么该学生不同的报考方法共有
          种(用数字作答)。
题型:不详难度:| 查看答案
为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持.该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:
评估得分
[50,60)
[60,70)
[70,80)
[80,90]
评定类型
不合格
合格
良好
优秀
贷款金额(万元)
0
200
400
800

为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下:
(Ⅰ)估计该系统所属企业评估得分的中位数;
(Ⅱ)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?
题型:不详难度:| 查看答案
在一个袋子中放9个白球,1个红球,摇匀后随机摸球:
(1)  每次摸出球后记下球的颜色然后放回袋中;
(2)  每次摸出球后不放回袋中.
在两种情况下分别做10次试验,求每种情况下第4次摸到红球的频率.两个频率相差得远吗?两个事件的概率一样吗?第4次摸到红球的频率与第1次摸到红球的频率相差得远吗?请说明原因.
题型:不详难度:| 查看答案
掷一枚均匀的硬币10次,求出现正面的次数多于反面次数的概率.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.