当前位置:高中试题 > 数学试题 > 随机事件的概率 > (本小题满分13分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛...
题目
题型:不详难度:来源:
(本小题满分13分)
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数的分布列与期望E.
答案
.解:令分别表示甲、乙、丙在第k局中获胜.
   (Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为
        …5分
   (Ⅱ)的所有可能值为2,3,4,5,6.                         …6分
    
    
    
    
    
故有分布列

2
3
4
5
6
P





       
                                                           …11分
从而(局)              …13分
解析

核心考点
试题【(本小题满分13分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛】;主要考察你对随机事件的概率等知识点的理解。[详细]
举一反三
(本小题共13分)
某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;
(Ⅱ)设摸球次数为,求的分布列和数学期望.
题型:不详难度:| 查看答案
(本题满分13分)
  甲、乙两人同时参加某电台举办的有奖知识问答。约定甲,乙两人分别回答4个问题,答对一题得1分,不答或答错得0分,4个问题结束后以总分决定胜负。甲,乙回答正确的概率分别是,且不相互影响。求:
(1) 甲回答4次,至少得1分的概率;
(2) 甲恰好以3分的优势取胜的概率。
题型:不详难度:| 查看答案
本小题满分13分)
高三年级在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分.按照大于等于80分为优秀,小于80分为合格.为了解学生在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.

(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;
(4) 学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量x,求随机变量x的分布列期望.
题型:不详难度:| 查看答案
(本小题满分14分)
一个暗箱里放着6个黑球、4个白球.
(1)依次取出3个球,不放回,若第1次取出的是白球,求第3次取到黑球的概率;
(2)有放回地依次取出3个球,若第1次取出的是白球,求第3次取到黑球的概率;
(3)有放回地依次取出3个球,求取到白球个数的分布列和期望.
题型:不详难度:| 查看答案
.(本小题满分12分)第16届亚运会将于2010年11月在广州市举行,射击队运动员们正在积极备战. 若某运动员每次射击成绩为10环的概率为. 求该运动员在5次射击中,(1)恰有3次射击成绩为10环的概率;
(2)至少有3次射击成绩为10环的概率;
(3)记“射击成绩为10环的次数”为,求.(结果用分数表示)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.