题目
题型:不详难度:来源:
(1)与⊙C:(x+2)2+y2=2内切,且过点A(2,0);
(2)与⊙C1:x2+(y-1)2=1和⊙C2:x2+(y+1)2=4都外切;
(3)与⊙C1:(x+3)2+y2=9外切,且与⊙C2:(x-3)2+y2=1内切.
答案
(1)∵⊙C与⊙M内切,点A在⊙C外,
∴MC=r-
2 |
∴MA=r,∴MA-MC=
2 |
且
2 |
(2)∵⊙M与⊙C1,⊙C2都外切,
∴MC1=r+1,MC2=r+2.∴MC2-MC1=1,且1<2.
∴点M的轨迹是以C2,C1为焦点的双曲线的一支.
(3)∵⊙M与⊙C1外切,且与⊙C2内切,
∴MC1=r+3,MC2=r-1.∵MC1-MC2=4,且4<6,
∴点M的轨迹是以C1,C2为焦点的双曲线的一支.
核心考点
试题【求满足下列条件的动圆圆心M的轨迹.(1)与⊙C:(x+2)2+y2=2内切,且过点A(2,0);(2)与⊙C1:x2+(y-1)2=1和⊙C2:x2+(y+1)】;主要考察你对求轨迹方程等知识点的理解。[详细]
举一反三
AC |
BC |
(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.