当前位置:高中试题 > 数学试题 > 求轨迹方程 > 求满足下列条件的动圆圆心M的轨迹.(1)与⊙C:(x+2)2+y2=2内切,且过点A(2,0);(2)与⊙C1:x2+(y-1)2=1和⊙C2:x2+(y+1)...
题目
题型:不详难度:来源:
求满足下列条件的动圆圆心M的轨迹.
(1)与⊙C:(x+2)2+y2=2内切,且过点A(2,0);
(2)与⊙C1:x2+(y-1)2=1和⊙C2:x2+(y+1)2=4都外切;
(3)与⊙C1:(x+3)2+y2=9外切,且与⊙C2:(x-3)2+y2=1内切.
答案
设动圆M的半径为r.
(1)∵⊙C与⊙M内切,点A在⊙C外,
∴MC=r-


2

∴MA=r,∴MA-MC=


2



2
<4.∴点M的轨迹是以C,A为焦点的双曲线的一支.
(2)∵⊙M与⊙C1,⊙C2都外切,
∴MC1=r+1,MC2=r+2.∴MC2-MC1=1,且1<2.
∴点M的轨迹是以C2,C1为焦点的双曲线的一支.
(3)∵⊙M与⊙C1外切,且与⊙C2内切,
∴MC1=r+3,MC2=r-1.∵MC1-MC2=4,且4<6,
∴点M的轨迹是以C1,C2为焦点的双曲线的一支.
核心考点
试题【求满足下列条件的动圆圆心M的轨迹.(1)与⊙C:(x+2)2+y2=2内切,且过点A(2,0);(2)与⊙C1:x2+(y-1)2=1和⊙C2:x2+(y+1)】;主要考察你对求轨迹方程等知识点的理解。[详细]
举一反三
高为5m和3m的两根旗杆竖在水平地面上,且相距10m,如果把两旗杆底部的坐标分别确定为A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是______.
题型:不详难度:| 查看答案
已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足


AC


BC
=0
,设P为弦AB的中点,
(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.魔方格
题型:惠州模拟难度:| 查看答案
(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为______.
题型:上海难度:| 查看答案
到直线y=x的距离与到x轴的距离相等的点的轨迹方程为(  )
题型:不详难度:| 查看答案
A.y=xB.y=-x
C.y=xy=-xD.y=(2+)xy=(-2)x
已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是(  )
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.圆B.椭圆C.双曲线D.抛物线