当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,若记点P的轨迹为曲线C.(1)求曲线C的方程.    (2)若直线L与曲线C相交于A、B两点,且...
题目
题型:不详难度:来源:
已知:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,若记点P的轨迹为曲线C.
(1)求曲线C的方程.    
(2)若直线L与曲线C相交于A、B两点,且OA⊥OB.求证:直线L过定点,并求出该定点的坐标.
答案
(1)解法(一):点P与点F(2,0)的距离比它到直线x+4=0的距离小2,
所以点P与点F(2,0)的距离与它到直线x+2=0的距离相等.
由抛物线定义得:点p在以F为焦点直线x+2=0为准线的抛物线上,
抛物线方程为y2=8x.
解法(二):设动点P(x,y),则


(x-2)2+y2
=|x+4|-2

当x≤-4时,(x-2)2+y2=(-x-6)2,化简得:y2=8(x+2),显然x≥-2,但x≤-4,故此时曲线不存在;
当x>-4时,(x-2)2+y2=(x+2)2,化简得:y2=8x.
(2)设直线L:y=kx+b与抛物线的交点为(x1,y1),(x2,y2
①若L斜率存在,设斜率为k,则





y=kx+b
y2=8x
,整理后得ky2-8y+8b=0,且





k≠0
△=64-32kb≥0
y1y2=
8b
k
,又





y12=8x1
y22=8x2
,得x1x2=
y12y22
64
=
b2
k2

由OA⊥OB,得
y1
x1
y2
x2
=-1
,即
8k
b
=-1
,b=-8k
直线为y=k(x-8),所以L过定点(8,0);
②若L斜率不存在,则OA的斜率为1,





y=k
y2=8x
,得x=8,即直线L过(8,0);
综上:直线恒过定点(8,0).
核心考点
试题【已知:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,若记点P的轨迹为曲线C.(1)求曲线C的方程.    (2)若直线L与曲线C相交于A、B两点,且】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知抛物线y2=4x,椭圆经过点M(0,


3
)
,它们在x轴上有共同焦点,椭圆的对称轴是坐标轴.
(1)求椭圆的方程;
(2)若P是椭圆上的点,设T的坐标为(t,0)(t是已知正实数),求P与T之间的最短距离.
题型:不详难度:| 查看答案
双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,


3
)
到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求△PF1F2的面积;
(3)过(-2,0)作直线l交双曲线C于A,B两点,若


OP
=


OA
+


OB
,是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程,若不存在,说明理由.
题型:宝山区模拟难度:| 查看答案
已知直线l:y=ax+1与双曲线C:3x2-y2=1相交于A、B两点.
(1)求实数a的取值范围;
(2)当实数a取何值时,以线段AB为直径的圆经过坐标原点.
题型:不详难度:| 查看答案
已知椭圆
x2
4
+
y2
1
=1
,点M(2,3)过M点引直线交椭圆于A、B两点,求弦AB的中点P的轨迹方程.
题型:不详难度:| 查看答案
曲线y=ax2与直线y=kx+b相交于两点,它们的横坐标为x1、x2,而x3是直线与x轴交点的横坐标,那么(  )
A.x3=x1+x2B.x3=
1
x1
+
1
x2
C.x1x3=x2x3+x1x2D.x1x2=x2x3+x3x1
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.