当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=12的椭圆C2与抛物线C1在x轴上方的交点为P,延长P...
题目
题型:不详难度:来源:
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=
1
2
的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.
答案
(1)当m=1时,y2=4x,则F1(-1,0),F2(1,0)
设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),则c=1,又e=
c
a
=
1
2
,所以a=2,b2=3
所以椭圆C2方程为
x2
4
+
y2
3
=1(4分)
(2)因为c=m,e=
c
a
=
1
2
,则a=2m,b2=3m2
设椭圆方程为
x2
4m2
+
y2
3m2
=1






x2
4m2
+
y2
3m2
=1
y2=4mx
,得3x2+16mx-12m2=0(6分)
即(x+6m)(3x-2m)=0,得xP=
2m
3
代入抛物线方程得yP=
2


6
3
m,
即P(
2m
3
2


6
m
3

|PF2|=xP+m=
5m
3
,|PF1|=2a-|PF2|=4m-
5m
3
=
7m
3
,|F1F2|=2m=
6m
3

因为△PF1F2的边长恰好是三个连续的自然数,所以m=3(8分)
此时抛物线方程为y2=12x,P(2,2


6
),直线PQ方程为:y=-2


6
(x-3).
联立





y=-2


6
(x-3)
y2=12x
,得2x2-13x+18=0,即(x-2)(2x-9)=0,
所以xQ=
9
2
,代入抛物线方程得yQ=-3


6
,即Q(
9
2
,-3


6

∴|PQ|=


(2-
9
2
)
2
+(2


6
+3


6
)
2
=
25
2

设M(
t2
12
,t)到直线PQ的距离为d,t∈(-3


6
,2


6

则d=
|


6
6
t2+t-6


6
|


24+1
=


6
30
|(t+


6
2
2-
75
2
|(10分)
当t=-


6
2
时,dmax=


6
30
75
2
=
5


6
4

即△MPQ面积的最大值为
1
2
×
25
2
×
5


6
4
=
125


6
16
.(12分)
核心考点
试题【如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=12的椭圆C2与抛物线C1在x轴上方的交点为P,延长P】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知A、B、C是长轴长为4的椭圆上的三点,点A是长轴的一个顶点,BC过椭圆中心O,如图,且


AC


BC
=0
,|BC|=2|AC|.
(1)求椭圆的方程;
(2)如果椭圆上两点P、Q使∠PCQ的平分线垂直AO,则总存在实数λ,使


PQ


AB
,请给出证明.
题型:不详难度:| 查看答案
已知中心在原点,顶点A1、A2在x轴上,离心率e=


21
3
的双曲线过点P(6,6).
(1)求双曲线方程.
(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.
题型:不详难度:| 查看答案
已知椭圆E:
x2
a2
+
y2
3
=1
(a


3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.
题型:不详难度:| 查看答案
已知过抛物线x2=4y的焦点,斜率为k(k>0)的直线l交抛物线于A(x1,y2),B(x2,y2)(x1<x2)两点,且|AB|=8.
(1)求直线l的方程;
(2)若点C(x3,y3)是抛物线弧AB上的一点,求△ABC面积的最大值,并求出点C的坐标.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,动点P到两点(-


3
,0),(


3
,0)的距离之和等于4,设点P的轨迹为曲线C,直线l过点E(-1,0)且与曲线C交于A,B两点.
(1)求曲线C的轨迹方程;
(2)若AB中点横坐标为-
1
2
,求直线AB的方程;
(3)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.