当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 点P在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是         ...
题目
题型:不详难度:来源:
点P在双曲线上•,是这条双曲线的两个焦点,
,且的三条边长成等差数列,则此双曲线的离心率是         
答案
5
解析

试题分析:设P是双曲线右支上一点,由三条边长成等差数列得
,即因为所以有代入整理得
点评:双曲线定义:双曲线上的点到两焦点的距离之差的绝对值等于,求离心率的题目关键是找到关于的齐次方程或不等式
核心考点
试题【点P在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是         】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
题型:不详难度:| 查看答案
已知已知点(2,3)在双曲线C:上,C的焦距为4,
则它的离心率为( )
A.2B.C.D.

题型:不详难度:| 查看答案
点P到点及到直线的距离都相等,如果这样的点恰好只有一个,那么a的值是(  )
A.B.C.D.

题型:不详难度:| 查看答案
(本题满分12分)已知椭圆经过点,且其右焦点与抛物线的焦点F重合.
(Ⅰ)求椭圆的方程;
(II)直线经过点与椭圆相交于A、B两点,与抛物线相交于C、D两点.求的最大值.
题型:不详难度:| 查看答案
(本题满分12分)给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程.
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点,求证:为定值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.