当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,-1)共线.(1)求椭圆的离心率;(2)设M为椭圆上任意一...
题目
题型:不详难度:来源:
已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,=(3,-1)共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且),证明为定值.
答案
(1);(2)
解析

试题分析:(1)设椭圆方程为,直线AB:y=x-c,
联立消去y可得:
令A(),B (),

向量=(), 与向量=(3,-1)共线,
所以3()+()=0,
即3(-2c)+()=0,
4()-6c=0,
化简得:
所以离心率为=
(2)椭圆即: ①
设向量=(x,y),=(),=()
(x,y)=λ()+μ()
即:x=,y= 
M在椭圆上,把坐标代入椭圆方程① 得 ②
直线AB的方程与椭圆方程联立得,由(1)
已证,所以
所以==
而A,B在椭圆上 , 
全部代入②整理可得 为定值。
点评:典型题,涉及直线与椭圆的位置关系问题,通过联立方程组得到一元二次方程,应用韦达定理可实现整体代换,简化解题过程。
核心考点
试题【已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,-1)共线.(1)求椭圆的离心率;(2)设M为椭圆上任意一】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知双曲线的焦点为F1.F2,点M在双曲线上且,则点M到x轴的距离为   (   )
A.B.C.D.

题型:不详难度:| 查看答案
椭圆上一点M到焦点的距离为2,的中点,则等于(   )
A.2B.C.D.

题型:不详难度:| 查看答案
若抛物线的焦点与双曲线的左焦点重合,则实数=    
题型:不详难度:| 查看答案
已知抛物线的顶点在坐标原点,它的准线经过双曲线的左焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是
(1)求抛物线的方程及其焦点的坐标;
(2)求双曲线的方程及其离心率
题型:不详难度:| 查看答案
已知椭圆的两个焦点分别为,离心率
(1)求椭圆方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为–,求直线l倾斜角的取值范围。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.