当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > (本题满分12分)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.(Ⅰ)求椭圆E的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任...
题目
题型:不详难度:来源:
(本题满分12分)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且?若存在,写出该圆的方程,若不存在说明理由。
答案
(1)
(2)存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
解析

试题分析:(1)因为椭圆E: (a,b>0)过M(2,),N(,1)两点,
所以解得所以椭圆E的方程为
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组,即,
则△=,即

 
要使,需使,即,所以,所以,
所以,所以,即,
因为直线为圆心在原点的圆的一条切线,
所以圆的半径为,,,
所求的圆为,此时圆的切线都满足,
而当切线的斜率不存在时切线为与椭圆的两个交点为满足,
综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理。存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备。(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性。
核心考点
试题【(本题满分12分)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.(Ⅰ)求椭圆E的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知F1F2分别是双曲线的左、右焦点,P是双曲线左支的一点, ,则该双曲线的离心率为(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本题15分)已知点是椭圆E)上一点,F1F2分别是椭圆E的左、右焦点,O是坐标原点,PF1x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
题型:不详难度:| 查看答案
已知P为抛物线上一个动点,Q为圆上一个动点,那么点P到点Q的距离与点P到轴距离之和最小值是(  )
A.B.C.D.

题型:不详难度:| 查看答案
设双曲线的右焦点为,左右顶点分别为,过且与双曲线的一条渐近线平行的直线与另一条渐近线相交于,若恰好在以为直径的圆上,则双曲线的离心率为________ ______.
题型:不详难度:| 查看答案
椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.