当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 直角坐标平面上,为原点,为动点,,. 过点作轴于,过作轴于点,. 记点的轨迹为曲线,点、,过点作直线交曲线于两个不同的点、(点在与之间).(1)求曲线的方程;(...
题目
题型:不详难度:来源:
直角坐标平面上,为原点,为动点,. 过点轴于,过轴于点. 记点的轨迹为曲线
,过点作直线交曲线于两个不同的点(点之间).
(1)求曲线的方程;
(2)是否存在直线,使得,并说明理由.
答案
(1)  (2)不存在直线l,使得|BP|=|BQ|
解析

试题分析:(Ⅰ)设点T的坐标为,点M的坐标为,则M1的坐标为(0,),
,于是点N的坐标为,N1的坐标
,所以   

由此得   

即所求的方程表示的曲线C是椭圆.       
(Ⅱ)点A(5,0)在曲线C即椭圆的外部,当直线l的斜率不存在时,直线l与椭圆C
无交点,所以直线l斜率存在,并设为k. 直线l的方程为    
由方程组
依题意   
时,设交点PQ的中点为

 
     

不可能成立,所以不存在直线l,使得|BP|=|BQ|.  
点评:本题主要考查了椭圆的标准方程和椭圆与直线的关系.当涉及直线与圆锥曲线的位置关系时,常需要把直线方程与圆锥曲线的方程联立,借助韦达定理求得答案.
核心考点
试题【直角坐标平面上,为原点,为动点,,. 过点作轴于,过作轴于点,. 记点的轨迹为曲线,点、,过点作直线交曲线于两个不同的点、(点在与之间).(1)求曲线的方程;(】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知双曲线 (a>0,b>0) 的焦点到渐近线的距离是a,则双曲线的离心率的值是     
题型:不详难度:| 查看答案
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
题型:不详难度:| 查看答案
直线与曲线的交点的个数是        个.
题型:不详难度:| 查看答案
设椭圆的左、右焦点分别为,已知椭圆上的任意一点,满足,过作垂直于椭圆长轴的弦长为3.

(1)求椭圆的方程;
(2)若过的直线交椭圆于两点,求的取值范围.
题型:不详难度:| 查看答案
,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且成等差数列。
(Ⅰ)求
(Ⅱ)若直线的斜率为1,求b的值。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.