当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.(Ⅰ) 求曲线C的直角坐标方程;(Ⅱ...
题目
题型:不详难度:来源:
在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 求直线被曲线所截得的弦长.
答案
(Ⅰ) (x-)2+(y-)2= 。
(Ⅱ)∣MN∣=∣t1-t2∣== 。
解析

试题分析:(Ⅰ)由得:r=cosq+sinq
两边同乘以r得:r2=rcosq+rsinq
x2+y2-x-y=0   即(x-)2+(y-)2=           5分
(Ⅱ) 将直线参数方程代入圆C的方程得: 5t2-21t+20=0
1+t2=,   t1t2=4
∣MN∣=∣t1-t2∣==            10分
点评:中档题,作为选考内容,难度不大,关键是掌握极坐标方程与直角坐标方程的互化公式。(II)小题,典型的参数方程的应用问题,通过“代入,整理,应用韦达定理”,求得线段长度。
核心考点
试题【在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.(Ⅰ) 求曲线C的直角坐标方程;(Ⅱ】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知抛物线,直线截抛物线C所得弦长为.
(1)求抛物线的方程;
(2)已知是抛物线上异于原点的两个动点,记试求当取得最小值时的最大值.
题型:不详难度:| 查看答案
已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(1)求椭圆及动圆圆心轨迹的方程;
(2) 在曲线上有两点,椭圆上有两点,满足共线,共线,且,求四边形面积的最小值.
题型:不详难度:| 查看答案
设椭圆的左、右焦点分别为为椭圆上异于长轴端点的一点,,△的内心为I,则(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知抛物线的准线经过椭圆的左焦点,且经过抛物线与椭圆两个交点的弦过抛物线的焦点,则椭圆的离心率为_____________
题型:不详难度:| 查看答案
已知离心率为的椭圆上的点到左焦点的最长距离为

(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点轴上,且使得的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.