当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中是到直线的距离;②(1) 求曲线的方程;(2) 若存在直线与曲线、椭圆均相切于同一点...
题目
题型:不详难度:来源:
在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中到直线的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.
答案
(1) ;(2)  
解析

试题分析:(1)求出到直线的距离d和的表达式,由=2d建立等式,整理得在把代入中求出x的取值范围即可.
(2)由导数的几何意义求出直线m的斜率,求出直线m的参数方程,然后代入曲线C2方程中,消去y得到关于x的一元二次方程,由直线与椭圆相切,所以△==0,而又二者联立起来解出a2,b2,由a2>b2,求出参数t的取值范围,在根据椭圆离心率e的定义就可求出其范围.
试题解析:解:(1)
,                            2分
由①得:

                                    4分
代入②得:
解得:
所以曲线的方程为:                        6分
(2)(解法一)由题意,直线与曲线相切,设切点为
则直线的方程为
                               7分
代入椭圆 的方程,并整理得:

由题意,直线与椭圆相切于点,则

                               9分
 即 联解得:         10分

,                           12分

所以椭圆离心率的取值范围是                  14分
(2)(解法二)设直线与曲线、椭圆 均相切于同一点                    7分
;
,
                            9分
联解,得                  10分

,                           12分

所以椭圆离心率的取值范围是                  14分
核心考点
试题【在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中是到直线的距离;②(1) 求曲线的方程;(2) 若存在直线与曲线、椭圆均相切于同一点】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知椭圆两焦点坐标分别为,,且经过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点,直线与椭圆交于两点.若△是以为直角顶点的等腰直角三角形,试求直线的方程.
题型:不详难度:| 查看答案
已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.
题型:不详难度:| 查看答案
已知椭圆上的点到其两焦点距离之和为,且过点
(Ⅰ)求椭圆方程;
(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,若,求△的面积.
题型:不详难度:| 查看答案
已知椭圆(a>b>0)的离心率为,右焦点为(,0).
(I)求椭圆的方程;
(Ⅱ)过椭圆的右焦点且斜率为k的直线与椭圆交于点A(xl,y1),B(x2,y2),若, 求斜率k是的值.
题型:不详难度:| 查看答案
已知是抛物线上的两个点,点的坐标为,直线的斜率为k, 为坐标原点.
(Ⅰ)若抛物线的焦点在直线的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为,求的最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.