当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 一动圆圆心在抛物线x2=4y上,过点(0,1)且与定直线l相切,则l的方程为(  )A.x=1B.x=116C.y=-1D.y=-116...
题目
题型:不详难度:来源:
一动圆圆心在抛物线x2=4y上,过点(0,1)且与定直线l相切,则l的方程为(  )
A.x=1B.x=
1
16
C.y=-1D.y=-
1
16
答案
根据抛物线方程可知抛物线焦点为(0,1),
∴定点为抛物线的焦点,
要使圆过点(0,1)且与定直线l相切,需圆心到定点的距离与定直线的距离相等,
根据抛物线的定义可知,定直线正是抛物线的准线
其方程为y=-1
故选C
核心考点
试题【一动圆圆心在抛物线x2=4y上,过点(0,1)且与定直线l相切,则l的方程为(  )A.x=1B.x=116C.y=-1D.y=-116】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是______.
题型:不详难度:| 查看答案
设椭圆的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为(    )
A.B.C.D.

题型:不详难度:| 查看答案
已知动圆M经过点A(3,0),且与直线l:x=-3相切,求动圆圆心M的轨迹方程.
题型:不详难度:| 查看答案
已知F是抛物线y2=x的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为______.
题型:不详难度:| 查看答案
若抛物线的焦点与双曲线的一个焦点相同,则该抛物线的方程为______________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.