当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N (1)求的值;(2)记直线MN的斜率为,直线AB的斜率为 证明...
题目
题型:不详难度:来源:
如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N

(1)求的值;
(2)记直线MN的斜率为,直线AB的斜率为 证明:为定值
答案
(1);(2) 
解析

试题分析:(1)把直线方程代入到抛物线方程中整理化简,然后根据一元二次方程根与系数的关系可求;(2) 利用设点表示出斜率,根据根与系数关系代入化简可求得定值
试题解析:(1)解:依题意,设直线AB的方程为
将其代入,消去,整理得从而   5分
(2)证明:

设M

设直线AM的方程为,将其代入,消去
整理得 所以同理可得
由(1)得为定值   10分
核心考点
试题【如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N (1)求的值;(2)记直线MN的斜率为,直线AB的斜率为 证明】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
已知实数满足方程,当)时,由此方程可以确定一个偶函数,则抛物线的焦点到点的轨迹上点的距离最大值为_________.
题型:不详难度:| 查看答案
设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点.
(1)若直线的斜率为,求证:
(2)设直线的斜率分别为,求的值.
题型:不详难度:| 查看答案
若抛物线的焦点与椭圆的右焦点重合,则的值为 (   )
A  4                B  2               C –4              D –2
题型:不详难度:| 查看答案
抛物线的焦点为,已知点为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为(   )
A.B.C.D.

题型:不详难度:| 查看答案
本题10分)如图,河道上有一座抛物线型拱桥,在正常水位时,拱圈最高点距水面为8m,拱圈内水面宽16 m.,为保证安全,要求通过的船顶部(设为平顶)与拱桥顶部在竖直方向上高度之差至少要有0.5m.
(1)一条船船顶部宽4m,要使这艘船安全通过,则船在水面以上部分高不能超过多少米?
(2)近日因受台风影响水位暴涨2.7m,为此必须加重船载,降低船身,才能通过桥洞. 试问:一艘顶部宽m,在水面以上部分高为4m的船船身应至少降低多少米才能安全通过?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.