当前位置:高中试题 > 数学试题 > 椭圆的几何性质 > 若M,N是椭圆C:x2a2+y2b2=1(a>b>0)上关于原点对称的两个点,P是椭圆C上任意一点.若直线PM、PN斜率存在,则它们斜率之积为(  )A.a2b...
题目
题型:不详难度:来源:
若M,N是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上关于原点对称的两个点,P是椭圆C上任意一点.若直线PM、PN斜率存在,则它们斜率之积为(  )
A.
a2
b2
B.-
a2
b2
C.
b2
a2
D.-
b2
a2
答案
设P(x0,y0),M(x1,y1),N(-x1,-y1).
x20
a2
+
y20
b2
=1
x21
a2
+
y21
b2
=1

得到
y20
=b2(1-
x20
a2
)
y21
=b2(1-
x21
a2
)

y21
-
y20
=b2(
x20
a2
-
x21
a2
)

∴kPM•kPN=
y1-y0
x1-x0
-y1-y0
-x1-x0
=
y21
-
y20
x21
-
x20
=
b2
a2
(
x20
-
x21
)
x21
-
x20
=-
b2
a2

故选D.
核心考点
试题【若M,N是椭圆C:x2a2+y2b2=1(a>b>0)上关于原点对称的两个点,P是椭圆C上任意一点.若直线PM、PN斜率存在,则它们斜率之积为(  )A.a2b】;主要考察你对椭圆的几何性质等知识点的理解。[详细]
举一反三
如图,已知椭圆中心在原点,F是焦点,A为顶点,准线l交x轴于点B,点P,Q在椭圆上,且PD⊥l于D,QF⊥AO,则①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值为椭圆的离心率的有(  )
A.1个B.3个C.4个D.5个

题型:不详难度:| 查看答案
在△ABC中,tan
C
2
=
1
2


AH


BC
=0


AB
•(


CA
+


CB
)=0
,则过点C,以A、H为两焦点的椭圆的离心率为(  )
A.
1
2
B.
1
3
C.


2
2
D.


3
3

题型:不详难度:| 查看答案
如图,A、B、C分别为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的顶点和焦点,若∠ABC=90°,则该椭圆的离心率为______.
题型:不详难度:| 查看答案
已知集合A={x|-2≤x≤10,x∈Z},m,n∈A,方程
x2
m
+
y2
n
=1
表示焦点在x轴上的椭圆,则这样的椭圆共有______个.
题型:不详难度:| 查看答案
设F1,F2分别为椭C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右两个焦点,椭圆C上的点A(1,
3
2
)
到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点Q(0.
1
2
)
求|PQ|的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.