当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 在棱长为1的正方体ABCD-A′B′C′D′中,若点P是棱上一点,则满足|PA|+|PC′|=2的点P的个数为(  )A.4B.6C.8D.12...
题目
题型:不详难度:来源:
在棱长为1的正方体ABCD-A′B′C′D′中,若点P是棱上一点,则满足|PA|+|PC′|=2的点P的个数为(  )
A.4B.6C.8D.12

答案
∵正方体的棱长为1
AC=


3

∵|PA|+|PC"|=2
∴点P是以2c=


3
为焦距,以a=1为长半轴,以
1
2
为短半轴的椭圆
∵P在正方体的棱上
∴P应是椭圆与正方体与棱的交点
结合正方体的性质可知,满足条件的点应该在棱B"C",C"D",CC",AA",AB,AD上各有一点满足条件
故选B
核心考点
试题【在棱长为1的正方体ABCD-A′B′C′D′中,若点P是棱上一点,则满足|PA|+|PC′|=2的点P的个数为(  )A.4B.6C.8D.12】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
(本小题满分13分)
设椭圆过点,且着焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上
题型:不详难度:| 查看答案
已知F1F2为椭圆的两个焦点,过F1的直线交椭圆于AB两点
若|F2A|+|F2B|=12,则|AB|=             
题型:不详难度:| 查看答案
(文) 已知椭圆的离心率为,直线ly=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)过椭圆C1的左顶点A做直线m,与圆O相交于两点R、S,若是钝角三角形,求直线m的斜率k的取值范围.
题型:不详难度:| 查看答案
(本题满分12分)已知椭圆为常数,且,过点且以向量为方向向量的直线与椭圆交于点,直线交椭圆于点 (为坐标原点).(1)的面积的表达式;(2)若,求的最大值.
题型:不详难度:| 查看答案
如图,已知椭圆的左、右准线分别为,且分别交轴于两点,从上一点发出一条光线经过椭圆的左焦点轴反射后与交于点,若,且,则椭圆的离心率等于(   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.