当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > (本小题满分12分)已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于、两点。(I)求曲线的方程;(...
题目
题型:不详难度:来源:
(本小题满分12分)
已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点,使得总能被轴平分
答案
(1);(2)见解析.
解析
(Ⅰ)利用相关点法把所求点的问题转化已知动点问题,从而得到曲线的轨迹方程;(Ⅱ)联立方程,利用韦达定理及条件转化为点的坐标关系,从而求出点的坐标。
解:(1)设为曲线上的任意一点,则点在圆上,
,曲线的方程为.  ………………2分       
(2)设点的坐标为,直线的方程为,  ………………3分   
代入曲线的方程,可得 ,……5分            
,∴
∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)
………………6分
设点,的坐标分别, ,则,               
要使轴平分,只要,            ………………9分
,        ………………10分
也就是
,即只要  ………………12分  
时,(*)对任意的s都成立,从而总能被轴平分.
所以在x轴上存在定点,使得总能被轴平分.
核心考点
试题【(本小题满分12分)已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于、两点。(I)求曲线的方程;(】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
(本小题满分12分)
已知椭圆C的离心率为,且过点Q(1,).
(1) 求椭圆C的方程;
(2) 若过点M(2,0)的直线与椭圆C相交于A,B两点,设P点在直线
上,且满足 (O为坐标原点),求实数t的最小值.
题型:不详难度:| 查看答案
已知椭圆的标准方程为,则椭圆的离心率为(       )
A.B.C.D.

题型:不详难度:| 查看答案
已知在△ABC中,B、C坐标分别为B (0,-4),C (0,4),且,顶点A
的轨迹方程是(      )
(A)x≠0)                (B)x≠0)   
(C)x≠0)                 (D)x≠0)
题型:不详难度:| 查看答案
椭圆的焦点为,过点的直线交椭圆于两点,,则椭圆的离心率为(    )
A.B.C.D.

题型:不详难度:| 查看答案
若椭圆的左、右焦点分别为,线段被抛物线的焦点F分成5:3两段,则椭圆的离心率为 (   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.