当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > (本题满分13分)已知直线与椭圆相交于A、B两点.(Ⅰ)若椭圆的离心率为,焦距为2,求线段AB的长;(Ⅱ)若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心...
题目
题型:不详难度:来源:
(本题满分13分)
已知直线与椭圆相交于AB两点.
(Ⅰ)若椭圆的离心率为,焦距为2,求线段AB的长;
(Ⅱ)若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心率 时,求椭圆的长轴长的最大值.
答案
解:(Ⅰ)椭圆的方程为 ,

 ;
(II)长轴长的最大值为
解析
本试题主要是考查了椭圆的方程的求解,以及直线与椭圆的位置关系的综合运用。
(1)根据题意的几何性质,得到系数a,b,c的关系式,进而得到椭圆的方程的求解。
(2)设出直线方程,与椭圆方程联立,得到关于x的一元二次方程,然后分析向量的数量积为零表示垂直,以及结合椭圆的离心率的范围得到所求。
解:(Ⅰ)   
∴椭圆的方程为                            ……………………… 2分
联立


                                 …………………… 6分
(II)

 整理得 

整理得:
代入上式得
 

由此得,故长轴长的最大值为.……… 13分
核心考点
试题【(本题满分13分)已知直线与椭圆相交于A、B两点.(Ⅰ)若椭圆的离心率为,焦距为2,求线段AB的长;(Ⅱ)若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
P点在椭圆上运动,Q,R分别在两圆上运动,则|PQ|+|PR|的最大值为          
题型:不详难度:| 查看答案
已知椭圆的左、右顶点分别为为短轴的端点,△的面积为,离心率是
(Ⅰ)求椭圆的方程;
(Ⅱ)若点是椭圆上异于的任意一点,直线与直线分别交于两点,证明:以为直径的圆与直线相切于点 (为椭圆的右焦点).
题型:不详难度:| 查看答案
(本题满分15分)已知椭圆的中心在原点,焦点在轴上,经过点,离心率

(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆的左、右顶点分别为,点为直线上任意一点(点不在轴上),
连结交椭圆于点,连结并延长交椭圆于点,试问:是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
题型:不详难度:| 查看答案
(本小题满分14分)
在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的倍后得到点Q(x,y),且满足·="1."
(1)求动点P所在曲线C的方程;
(2)过点B作斜率为-的直线L交曲线C于M、N两点,且++=,试求△MNH的面积.
题型:不详难度:| 查看答案
若焦点在轴上的椭圆的离心率为,则等于(   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.