当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 设椭圆C∶+=1(a>b>0)过点(0,4),离心率为.(1)求C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标....
题目
题型:不详难度:来源:
设椭圆C∶=1(a>b>0)过点(0,4),离心率为.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.
答案
(1)=1;(2) (,-).
解析

试题分析:(1)由已知可得b=4,再由在椭圆中有:及离心率,可求得a的值,从而就可写出椭圆C的方程;(2)由已知可写出过点(3,0)且斜率为的直线方程,将此直线方程代入椭圆C的方程中,解此方程就可求得直线被C所截线段的两个端点的横坐标,从而求得线段中点的横坐标,再代入直线方程就可得到线段中点的纵坐标,若方程不好解,注意韦达定理可直接求得所求线段中点的横坐标,进而可得线段中点的坐标.
试题解析:(1)将(0,4)代入C的方程得=1,∴b=4,
由e=,即1-,∴a=5,∴C的方程为=1.
(2)过点(3,0)且斜率为的直线方程为 y =(x-3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y= (x-3)代入C的方程,得=1,即x2-3x-8=0,解得
x1,x2
∴AB的中点坐标
(x1+x2-6)=-
即中点坐标为(,-).
核心考点
试题【设椭圆C∶+=1(a>b>0)过点(0,4),离心率为.(1)求C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆的离心率为.
(1)若原点到直线的距离为,求椭圆的方程;
(2)设过椭圆的右焦点且倾斜角为的直线和椭圆交于A,B两点.
,求b的值;
题型:不详难度:| 查看答案
设椭圆C:的离心率,右焦点到直线1的距离,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
题型:不详难度:| 查看答案
已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.