已知△ABC的三个顶点是A(3,-4)、B(0,3)、C(-6,0),求它的三条边所在的直线方程. |
由△ABC的三个顶点是A(3,-4)、B(0,3)、C(-6,0) 得到kAB==-,kAC==-,kBC==, 所以直线AB的方程为:y-3=-(x-0),化为一般式为7x+3y-9=0; 直线AC的方程为:y-0=-(x+6),化为一般式为4x+9y+24=0; 直线BC的方程为:y-3=(x-0),化为一般式为x-2y+6=0. |
核心考点
试题【已知△ABC的三个顶点是A(3,-4)、B(0,3)、C(-6,0),求它的三条边所在的直线方程.】;主要考察你对
直线方程的几种形式等知识点的理解。
[详细]
举一反三
已知直线l的斜率为6,且被两坐标轴所截得的线段长为,求直线l的方程. |
已知圆M:x2+y2+6x-4y+17=0,过点A(-1,0)作△ABC,使其满足条件:直线AB经过圆心M,∠BAC=30°,且B、C两点均在圆M上,则直线AC的方程为______. |
已知双曲线x2-=1与点P(1,2),过P点作直线l与双曲线交于A、B两点,若P为AB中点. (1)求直线AB的方程; (2)若Q(1,1),证明不存在以Q为中点的弦. |
下列四个命题:①经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示;②经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(x2-x1)(x-x1)=(y2-y1)(y-y1)表示;③不经过原点的直线都可以用方程+=1表示;④经过定点A(0,b)的直线都可以用方程y=kx+b表示.其中真命题的个数是( ) |
已知直线l1:x-2y+3=0,那么直线l1的方向向量为______;l2过点(1,1),并且l2的方向向量与方向向量满足•=0,则l2的方程为______. |