当前位置:高中试题 > 数学试题 > 直线方程的概念与直线的斜率 > 若α∈[π6,π2),则直线2xcosα+3y+1=0的倾斜角的取值范围是______....
题目
题型:不详难度:来源:
α∈[
π
6
π
2
)
,则直线2xcosα+3y+1=0的倾斜角的取值范围是______.
答案
直线2xcosα+3y+1=0的倾斜角为θ,它的斜率为:-
2
3
cosα
=tanθ,
因为α∈[
π
6
π
2
)
,cosθ∈(0,


3
2
],-
2
3
cosα
∈[-


3
3
,0

即:tanθ∈[-


3
3
,0
),θ∈[
6
,π)

故答案为:[
6
,π)
核心考点
试题【若α∈[π6,π2),则直线2xcosα+3y+1=0的倾斜角的取值范围是______.】;主要考察你对直线方程的概念与直线的斜率等知识点的理解。[详细]
举一反三
对平面上两点A(-4,1),B(3,-1),直线y=kx+2与线段AB恒有公共点,则k的取值范围是______.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左右焦点分别为F1,F2
(1)若椭圆C上的点A(1,
3
2
)到F1,F2的距离之和为4,求椭圆C的方程和焦点的坐标;
(2)若M,N是C上关于(0,0)对称的两点,P是C上任意一点,直线PM,PN的斜率都存在,记为kPM,kPN,求证:kPM与kPN之积为定值.
题型:不详难度:| 查看答案
过双曲线2x2-y2=1上一点A(1,1)作两条动弦AB,AC,且直线AB,AC的斜率的乘积为3.
(1)问直线BC是否可与坐标轴垂直?若可与坐标轴垂直,求直线BC的方程,若不与坐标轴垂直,试说明理由.
(2)证明直线BC过定点.
题型:不详难度:| 查看答案
求直线3x-2y+24=0的斜率及它在x、y轴上的截距.
题型:不详难度:| 查看答案
圆(x+1)2+y2=8内有一点P(-1,2),AB过点P,
①若弦长|AB|=2


7
,求直线AB的倾斜角α3;
②若圆上恰有三点到直线AB的距离等于


2
,求直线AB的方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.