题目
题型:高考真题难度:来源:
(2)若二面角A"-MN-C为直二面角,求λ的值.
答案
由已知∠BAC=90°,AB=AC,
三棱柱ABC-A′B′C′为直三棱柱,
所以M为AB′中点,
又因为N为B′C′的中点,
所以MN∥AC′,
又MN?平面A′ACC′,
因此MN∥平面A′ACC′ 。
(2)以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,如图,
设AA′=1,则AB=AC=1,
于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1)
所以M(),N(),
设=(x1,y1,z1)是平面A′MN的法向量,
由,得,
可取,
设=(x2,y2,z2)是平面MNC的法向量,
由,得,
可取,
因为二面角A"-MN-C为直二面角,
所以,
即-3+(-1)×(-1)+λ2=0,
解得λ=。
核心考点
试题【如图,直三棱柱ABC-A"B"C",∠BAC=90°,AB=AC=λAA",点M,N分别为A"B和B"C"的中心。(1)证明:MN∥平面A"ACC";(2)若二】;主要考察你对二面角等知识点的理解。[详细]
举一反三
(1)证明:FH∥面PAB;
(2)证明:PF⊥FD;
(3)若PB与平米ABCD所成的角为45°,求二面角A﹣PD﹣F的余弦值.
(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A﹣BE﹣C的余弦值.
(I)当k=1时,求证PA⊥B1C;
(II)当k为何值时,直线PA与平面BB1C1C所成的角的正弦值为 ,并求此时二面角A﹣PC﹣B的余弦值.
(2)求二面角B-AP-C的大小。
(2)求二面角A-PC-D的正弦值;
(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长。
最新试题
- 1下图是元素周期表中某元素的相关信息,从图中不能直接获得的信息是( )A.该元素属于非金属元素B.该元素的原子序数为7C
- 22010年3月14日,温家宝总理在中外记者见面会上说,社会公平正义比太阳还要有光辉。实现社会公平必须做到依法( )
- 3 下列文学常识对应不正确的一项是A.《三峡》——郦道元——北魏B.《爱莲说》——周敦颐——唐朝C.《芦花荡》——孙犁——
- 4What"s _____ with you?[ ]A. matter B. the wrong
- 5某中学为了了解本校学生的身体发育情况,抽测了同年龄的40名女学生的身高情况,统计人员将上述数据整理后,列出了频数分布表如
- 6某校八年级(三)班同学学习了“剖析从众”的有关内容后,决定召开一次“从从众的迷雾中走出来”的主题班会。“从众的迷雾中走出
- 7如图,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,连结BD,过A点作BD的垂线,交BC于E。如果EC=3cm
- 8依次填入下面这段文字横线处的语句,衔接最恰当的一组是(3分) ( )慈善文化的形成并非一朝一夕,需要一代人为此付出努
- 9元素周期表是我们学习化学的重要工具。下图是元素周期表的部分信息(其中省略了氦、锂、铍、硼、氖、氩等6种元素的元素符号):
- 10已知双曲线的焦点为F1.F2,点M在双曲线上且,则点M到x轴的距离为 ( )A.B.C.D.
热门考点
- 1不能用2H + + CO32- = CO2↑+H2O表示的反应是 A.醋酸溶液与碳酸钠溶液反应B.稀盐酸与碳
- 2计算:(-3)×2×[-23+59]÷(-2).
- 3—Did the young man________stealing your car the other day?—N
- 4中日是一衣带水的邻邦,两国关系的发展有赖于青年一代的沟通与交流。为此,我省N中学邀请日本某校学生前来访问,并拟定了以下交
- 5已知是两条不同直线, 是三个不同平面,则下列正确的是( )A.若,则B.若,则C.若,则D.若,则
- 6我国四大工业基地均位于东部沿海地区,对其原因分析不正确的是A.交通便利B.人口稠密C.工业基础好D.海边风光好
- 7为“验证机械能守恒定律”的实验装置示意图。在实验中,已知电磁打点计时器工作周期T=0.02S,自由下落的重锤质量m=2k
- 8已知集合A={x|x≥|x2-2x|},B={x|≥
- 9某种群中AA、Aa、aa的基因型频率如图,其中阴影部分表示繁殖成功率低的个体。则该种群经选择之后,下一代中三种基因型频率
- 10名著阅读填空。(4分)《 》是鲁迅先生的回忆性散文集。其中《 》