当前位置:高中试题 > 数学试题 > 二面角 > 在矩形ABCD中,AB=3,AD=4,P在AD和DC上运动,设∠ABP=θ,将△ABP沿BP折起,使得二面角A-BP-C成直二面角,当θ为(  )时,AC长最小...
题目
题型:不详难度:来源:
在矩形ABCD中,AB=3,AD=4,P在AD和DC上运动,设∠ABP=θ,将△ABP沿BP折起,使得二面角A-BP-C成直二面角,当θ为(  )时,AC长最小.
A.30°B.45°C.60°D.75°
答案
过A作AH⊥BP于H,连CH,
∴AH⊥面BCP.∴在Rt△ABH中,AH=3sinθ,BH=3cosθ.
在△BHC中,CH2=(3cosθ)2+42-2×4×3cosθ×cos(90°-θ),
∴在Rt△ACH中,AC2=25-12sin2θ,∴θ=45°时,AC长最小;
故选B.
核心考点
试题【在矩形ABCD中,AB=3,AD=4,P在AD和DC上运动,设∠ABP=θ,将△ABP沿BP折起,使得二面角A-BP-C成直二面角,当θ为(  )时,AC长最小】;主要考察你对二面角等知识点的理解。[详细]
举一反三
表面积为4π的球O与平面角为钝角的二面角的两个半平面相切于A、B两点,三角形OAB的面积S=
2
5
,则球心到二面角的棱的距离为______.
题型:不详难度:| 查看答案
在△ABC中,∠B=90°,AC=
15
2
,D,E两点分别在AB,AC上.使
AD
DB
=
AE
EC
=2,DE=3.将△ABC沿DE折成直二面角,则二面角A-EC-B的余弦值为(  )
A.
3


22
22
B.
5


22
22
C.
3


34
34
D.
5


34
34
题型:不详难度:| 查看答案
若二面角α-l-β的大小为
π
3
,直线m⊥α,则β所在平面内的直线与m所成角的取值范围是(  )
A.(0,
π
2
)
B.[
π
3
π
2
]
C.[
π
6
π
2
]
D.[
π
6
3
]
题型:不详难度:| 查看答案
在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,点E在棱CC1上,点F是棱C1D1的中点.
(I)若点E是棱CC1的中点,求证:EF平面A1BD;
(II)试确定点E的位置,使得A1-BD-E为直二面角,并说明理由.
题型:不详难度:| 查看答案
已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.