当前位置:高中试题 > 数学试题 > 二面角 > 如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.(1)求证:A′D⊥E...
题目
题型:不详难度:来源:
如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.

(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.
答案
(1)证明:∵AD⊥AE,DC⊥CF
∴A′D⊥A′E,A′D⊥A′F∴A′D⊥面A′EF,而EF⊂面A′EF
∴A′D⊥EF
(2)取EF的中点G,连A′G,DG,如图
∵AE=CF,
∴A′E=A′F,
∴GA′⊥EF又由(1)知A′D⊥EF,
∴EF⊥面A′GD,EF⊥GD
∴∠A′GD为二面角A′-EF-D的平面角
在△A′EF中,A′E=A′F=1,EF=


2

∴∠EA′F=90°,
AG=
1
2
EF=


2
2
又A′D=AD=2在Rt△A′GD中,
tan∠AGD=
AD
AG
=2


2

即二面角A′-EF-D的正切值为2


2


核心考点
试题【如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.(1)求证:A′D⊥E】;主要考察你对二面角等知识点的理解。[详细]
举一反三
如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在矩形ABCD的边BC上移动.
(Ⅰ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅱ)当CE等于何值时,二面角P-DE-A的大小为45°.
题型:不详难度:| 查看答案
三棱柱ABC-A1B1C1中,∠ABC=90°,BB1⊥底面ABC,D为棱AC的中点,E为棱A1C1的中点,且AB=BC=BB1=1.
(1)求证:CE平面BA1D.
(2)求二面角A1-BD-C的余弦值.
(3)棱CC1上是否存在一点P,使PD⊥平面A1BD,若存在,试确定P点位置,若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=2,CD=


3
AB=


3
,E、F
分别为AC、AD上的动点.
(1)若
AE
EC
=
AF
FD
,求证:平面BEF⊥平面ABC;
(2)若
AE
EC
=1
AF
FD
=2
,求平面BEF与平面BCD所成的锐二面角的大小.
题型:不详难度:| 查看答案
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.E是CC1的中点,
(1)求锐二面角D-B1E-B的余弦值.
(2)试判断AC与面DB1E的位置关系,并说明理由.
(3)设M是棱AB上一点,若M到面DB1E的距离为


21
7
,试确定点M的位置.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(1)证明:BC⊥AMN;
(2)在线段PD上是否存在一点E,使得MN面ACE?若存在,求出PE的长,若不存在,说明理由.
(3)求二面角A-PD-C的正切值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.