当前位置:高中试题 > 数学试题 > 线线角 > (本小题满分13分)已知,在水平平面上有一长方体绕旋转得到如图所示的几何体.(Ⅰ)证明:平面平面;(Ⅱ)当时,直线与平面所成的角的正弦值为,求的长度;(Ⅲ)在(...
题目
题型:不详难度:来源:
(本小题满分13分)
已知,在水平平面上有一长方体旋转得到如图所示的几何体.

(Ⅰ)证明:平面平面
(Ⅱ)当时,直线与平面所成的角的正弦值为,求的长度;
(Ⅲ)在(Ⅱ)条件下,设旋转过程中,平面与平面所成的角为长方体的最高点离平面的距离为,请直接写出的一个表达式,并注明定义域.
答案
证明:(Ⅰ)延长




   ……………………………………2分
  
     ……………………………………3分
 ,  ……………………………………4分
平面平面;……………………………………5分
(Ⅱ)如图,以所在直线为x轴,y轴,z轴,建立空间直角坐标系
         ……………………………………6分

  ……………………………………7分
设平面的一个法向量为
则由,取   ……………………………………8分
设直线
解得               ……………………………………10分
(Ⅲ)              ……………………………………13分
解析

核心考点
试题【(本小题满分13分)已知,在水平平面上有一长方体绕旋转得到如图所示的几何体.(Ⅰ)证明:平面平面;(Ⅱ)当时,直线与平面所成的角的正弦值为,求的长度;(Ⅲ)在(】;主要考察你对线线角等知识点的理解。[详细]
举一反三
已知,则在内过点B的所有直线中(    )
A.不一定存在与平行的直线B.只有两条与平行的直线
C.存在无数条与平行的直线D.存在唯一一条与平行的直线

题型:不详难度:| 查看答案
(本小题满分12分)
如图2,在直三棱柱ABC-中,AB=1,

(Ⅰ)证明:
(Ⅱ)求二面角的正弦值.
题型:不详难度:| 查看答案
已知二面角α-l-β的大小为600,m、n为异面直线,且m⊥α,n⊥β,则m、n所成的角为(   )
A.300B.600C.900D.1200

题型:不详难度:| 查看答案
如图1,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点.将△ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的度数为(   )

A.90°            B.60°            C.45°         D.0°
题型:不详难度:| 查看答案
如图2,两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(   )
A.1个B.2个C.3个D.无穷多个

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.