当前位置:高中试题 > 数学试题 > 线线角 > 在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1;类比到空间,在长方体中,一条对角线与从其一顶点出发的三条棱所...
题目
题型:不详难度:来源:
在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1;类比到空间,在长方体中,一条对角线与从其一顶点出发的三条棱所成的角分别为α,β,γ,则正确的式子是________.
答案
cos2α+cos2β+cos2γ=1
解析

核心考点
试题【在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1;类比到空间,在长方体中,一条对角线与从其一顶点出发的三条棱所】;主要考察你对线线角等知识点的理解。[详细]
举一反三
.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

题型:不详难度:| 查看答案
(本小题满分14分)正△的边长为4,边上的高,分别是
边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
 
题型:不详难度:| 查看答案
((本小题12分)如图,在梯形中,,四边形为矩形,平面平面.
(1)求证:平面
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

题型:不详难度:| 查看答案
空间四点A、B、C、D如果其中任意三点不共线,则经过其中三个点的平面有(    )
A.一个或两个       B.一个或三个        C.一个或四个        D.两个或三个
题型:不详难度:| 查看答案
已知正四棱柱中,=重点,则异面直线所成角的余弦值为(      )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.