当前位置:高中试题 > 数学试题 > 线线角 > 在三棱柱中,底面是正三角形,侧棱底面,点是侧面 的中心,若,则直线与平面所成角的大小为(   )A.B.C.D....
题目
题型:不详难度:来源:
在三棱柱中,底面是正三角形,侧棱底面,点是侧面 的中心,若,则直线与平面所成角的大小为(   )
A.B.C.D.

答案
A
解析

试题分析:由题意画出图形,取BC的中点D,连接AD与ED,因为三棱柱ABC-A1B1C1中,底面是正三角形,侧棱AA1⊥底面ABC,所以平面BCC1B1⊥平面ABC,点E是侧面BB1CC1的中心,所以ED⊥BC,AD⊥BC,所以AD⊥平面EBC,∠AED就是直线AE与平面BB1CC1所成角,∵AA1=3AB,∴,所以∠AED=30°,即直线与平面所成角
点评:本题考查直线与平面垂直的判断方法,直线与平面所成角的求法,考查计算能力.
核心考点
试题【在三棱柱中,底面是正三角形,侧棱底面,点是侧面 的中心,若,则直线与平面所成角的大小为(   )A.B.C.D.】;主要考察你对线线角等知识点的理解。[详细]
举一反三
正四棱锥(底面为正方形,顶点在底面上的射影是底面的中心)的底面边长为2,高为2,为边的中点,动点在表面上运动,并且总保持,则动点的轨迹的周长为(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本题10分)三棱柱中,侧棱底面

(1)求异面直线所成角的余弦值;
(2)求证:
题型:不详难度:| 查看答案
(本题12分)如图,平面,点上,,四边形为直角梯形,,

(1)求证:平面
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。
题型:不详难度:| 查看答案
ab是两条不重合的直线,是两个不重合的平面,则下列命题中不正确的一个是
A.若B.若,则
C.若D.若,则

题型:不详难度:| 查看答案
已知直线l垂直平面a,垂足为O.在矩形ABCD中AD=1,AB=2,若点A在l上移动,点 B在平面a上移动,则O、D两点间的最大距离为
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.