当前位置:高中试题 > 数学试题 > 线线角 > (本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,为中点,为上一个动点.(Ⅰ)确定点的位置,使得;(Ⅱ)当时,求二面角的平...
题目
题型:不详难度:来源:
(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,中点,上一个动点.

(Ⅰ)确定点的位置,使得
(Ⅱ)当时,求二面角的平
面角余弦值.
答案
(1)根据已知中的线线垂直关系, 来结合线面垂直的判定定理来分析线面垂直,这类试题先是猜想点的位置,然后加以证明。
(2)
解析

试题分析:方法一:
(Ⅰ)如图,

分别以所在直线为轴建立空间直角坐标系,则
易得 ………………2分
由题意得,设

则由
,得的四等分点.………………………6分
(Ⅱ)易知平面的一个法向量为,设平面的法向量为
,得,取,得, ……………10分
,∴二面角的平面角余弦值为.12分
方法二:
(Ⅰ)∵在平面内的射影为,且四边形为正方形,为中点, ∴
同理,在平面内的射影为,则
由△~△, ∴,得的四等分点. …………………6分
(Ⅱ)∵平面,过点作,垂足为
连结,则为二面角的平面角;…………………………8分
,得,解得
∴在中,,
;∴二面角的平面角余弦值为. …12分
点评:解决该试题的关键是能合理的根据结论 ,逆向求点点M的位置,进而结合向量法或者是几何性质法求解二面角,属于中档题。
核心考点
试题【(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,为中点,为上一个动点.(Ⅰ)确定点的位置,使得;(Ⅱ)当时,求二面角的平】;主要考察你对线线角等知识点的理解。[详细]
举一反三
(本小题满分13分)如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.

(Ⅰ)若的中点,求证://平面
(Ⅱ)若,求证:
(III)在(Ⅱ)的条件下,若,求四棱锥的体积.
题型:不详难度:| 查看答案
已知是两条不同的直线,是两个不重合的平面,给出下列命题:
①若,则           ②若 ;      
③若 ;   ④若;   
其中正确命题的个数为                   (      )                                                  
A.1个    B.2个C.3个D.4个

题型:不详难度:| 查看答案
一个多面体的直观图和三视图如图所示,其中分别是的中点,上的一动点,主视图与俯视图都为正方形。

⑴求证:
⑵当时,在棱上确定一点,使得∥平面,并给出证明。
⑶求二面角的平面角余弦值。
题型:不详难度:| 查看答案
在如图的直三棱柱中,,点的中点.

(1)求证:∥平面
(2)求异面直线所成的角的余弦值;
(3)求直线与平面所成角的正弦值;
题型:不详难度:| 查看答案
如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的体积.

(Ⅰ)求 的表达式;
(Ⅱ)当x为何值时,取得最大值?
(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.