当前位置:高中试题 > 数学试题 > 线线角 > 如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN.(1)证明对...
题目
题型:不详难度:来源:
如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN.

(1)证明对任意a∈(0,),总有MN∥平面DCC1D1.
(2)当a为何值时,MN的长最小?
答案
(1)见解析  (2) 当a=时,MN的长有最小值
解析
(1)作MP∥AD,交DD1于P,作NQ∥BC,交DC于Q,连接PQ.

由题意得MP∥NQ,且MP=NQ,
则四边形MNQP为平行四边形.
∴MN∥PQ.
又PQ⊂平面DCC1D1,MN⊄平面DCC1D1,
∴MN∥平面DCC1D1.
(2)由(1)知四边形MNQP为平行四边形,
∴MN=PQ,
由已知D1M=DN=a,DD1=AD=DC=1,
∴AD1=BD=,
∴D1P∶1=a∶,DQ∶1=a∶,
即D1P=DQ=.
∴MN=PQ=
=
=(0<a<),
故当a=时,MN的长有最小值.
即当M,N分别移动到AD1,BD的中点时,MN的长最小,此时MN的长为.
核心考点
试题【如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN.(1)证明对】;主要考察你对线线角等知识点的理解。[详细]
举一反三
设l,m,n为三条不同的直线,α,β为两个不同的平面,下列命题中正确的个数是(  )
①若l⊥α,m∥β,α⊥β,则l⊥m;
②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;
③若l∥m,m∥n,l⊥α,则n⊥α;
④若l∥m,m⊥α,n⊥β,α∥β,则l∥n.
A.1B.2C.3D.4

题型:不详难度:| 查看答案
对于直线m,n和平面α,β,α⊥β的一个充分条件是(  )
A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂α
C.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β

题型:不详难度:| 查看答案
设α,β表示两个不同平面,l,m表示两条不同的直线,则下列命题正确的是(  )
A.若l⊥m,l⊂α,m⊂β,则α⊥β
B.若l⊥α,m∥β,α⊥β,则l⊥m
C.若l∥m,l⊂α,m⊥β,则α∥β
D.若l⊥α,m⊥β,α∥β,则l∥m

题型:不详难度:| 查看答案
已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有(  )
A.0个B.1个C.2个D.3个

题型:不详难度:| 查看答案
已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则(  )
A.n⊥βB.n∥β
C.n⊥αD.n∥α或n⊂α

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.