当前位置:高中试题 > 数学试题 > 线线角 > 如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=2,∠BAD=∠CDA=45°,(Ⅰ)求异面直线CE与AF...
题目
题型:天津高考真题难度:来源:
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=2,∠BAD=∠CDA=45°,
(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值.
答案
(Ⅰ)解:因为四边形ADEF是正方形,所以FA∥ED,
故∠CED为异面直线CE与AF所成的角,
因为FA⊥平面ABCD,所以FA⊥CD,故ED⊥CD,
在Rt△CDE中,CD=1,

所以异面直线CE与AF所成角的余弦值为
(Ⅱ)证明:过点B作BG∥CD,交AD于点G,
则∠BCA=∠CDA=45°,
由∠BAD=45°,可得BG⊥AB,从而CD⊥AB,
又CD⊥FA,FA∩AB=A,
所以CD⊥平面ABF。
(Ⅲ)由(Ⅱ)及已知,可得AG=,即G为AD的中点,
取EF的中点N,连接GN,则GN⊥EF,
因为BC∥AD,所以BC∥EF,
过点N作NM⊥EF,交BC于M,
则∠GNM为二面角B-EF-A的平面角,
连接GM,可得AD⊥平面GNM,故AD⊥GM,
从而BC⊥GM,由已知,可得
由NG∥FA,FA⊥GM,得NC⊥CM,
在Rt△NGM中,
所以二面角B-EF-A的正切值为
核心考点
试题【如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=2,∠BAD=∠CDA=45°,(Ⅰ)求异面直线CE与AF】;主要考察你对线线角等知识点的理解。[详细]
举一反三
如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点,
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M。
题型:湖南省高考真题难度:| 查看答案
已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为 [     ]

A、
B、
C、
D、

题型:高考真题难度:| 查看答案
已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,高AA1=2。求:
(1)异面直线BD与AB1所成的角的大小(结果用反三角函数表示);
(2)四面体AB1D1C的体积。
题型:上海高考真题难度:| 查看答案
如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=
(Ⅰ)求异面直线AC与A1B1所成角的余弦值;
(Ⅱ)求二面角A-A1C1-B1的正弦值;
(Ⅲ)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C,求线段BM的长.
题型:天津高考真题难度:| 查看答案
如图,在长方体ABCD-A1B1C1D1中,E,F分别是棱BC,CC1上的点,CF=AB=2CE。AB:AD:AA1=1:2:4。
(1)求异面直线EF与A1D所成角的余弦值;
(2)证明AF⊥平面A1ED;
(3)求二面角A1-ED-F的正弦值。
题型:天津高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.