当前位置:高中试题 > 数学试题 > 面面垂直 > 如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=...
题目
题型:高考真题难度:来源:
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P-ABCD的体积.
答案
(Ⅰ)证明:因为PH是四棱锥P-ABCD的高,
所以AC⊥PH,
又AC⊥BD,PH,BD都在平面PBD内,且PH∩BD=H,
所以AC⊥平面PBD,
故平面PAC⊥平面PBD.
(Ⅱ)解:因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=
所以HA=HB=
因为∠APB=∠ADB=60°,
所以PA=PB=,HD=HC=1,
可得PH=
等腰梯形ABCD的面积为
所以四棱锥的体积为
核心考点
试题【如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=】;主要考察你对面面垂直等知识点的理解。[详细]
举一反三
如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=AB且E为PB的中点时,求AE与平面PDB所成的角的大小。
题型:北京高考真题难度:| 查看答案
设α,β是两个不同的平面,l是一条直线,以下命题正确的是

[     ]

A.若l⊥α,α⊥β,则lβ
B.若l∥α,α∥β,则lβ
C.若l⊥α,α∥β,则l⊥β
D.若l∥α,α⊥β,则l⊥β
题型:浙江省高考真题难度:| 查看答案
如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B。
(I)证明:平面AB1C⊥平面A1BC1
(II)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值。
题型:辽宁省高考真题难度:| 查看答案
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、 F分别为MB、PB、PC的中点,且AD=PD=2MA。
(I)求证:平面EFG⊥平面PDC;
(Ⅱ)求三棱锥P-MAB与四棱锥P-ABCD的体积之比。
题型:山东省高考真题难度:| 查看答案
如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC边上高,把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;
(2)设BD=1,求三棱锥D-ABC的表面积。
题型:陕西省高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.