当前位置:高中试题 > 数学试题 > 面面垂直 > 已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点. (Ⅰ)证明:面PAD⊥...
题目
题型:江苏月考题难度:来源:
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点. (Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角;
(Ⅲ)求面AMC与面BMC所成二面角的大小.
答案

解:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,
∴由三垂线定理得:CD⊥PD.
因而,CD与面PAD内两条相交直线AD,PD都垂直,
∴CD⊥面PAD.
又CD⊥面PCD,
∴面PAD⊥面PCD.
(Ⅱ)解:过点B作BE∥CA,且BE=CA, 则∠PBE是AC与PB所成的角.
连接AE,可知AC=CB=BE=AE=
又AB=2, 所以四边形ACBE为正方形.
由PA⊥面ABCD,得∠PEB=90°
在Rt△PEB中,BE=a2=3b2,PB=

∴AC与PB所成的角为
(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.
在Rt△PAB中,AM=MB,又AC=CB,
∴△AMC≌△BMC,
∴BN⊥CM,故∠ANB为所求二面角的平面角
∵CB⊥AC,
由三垂线定理,得CB⊥PC,
在Rt△PCB中,CM=MB,所以CM=AM.
在等腰三角形AMC中,AN·MC=

∴AB=2,

故所求的二面角为
 


核心考点
试题【已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点. (Ⅰ)证明:面PAD⊥】;主要考察你对面面垂直等知识点的理解。[详细]
举一反三
已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,mβ,则α⊥β;
②若mα,nα,m∥β,n∥β,则α∥β;
③mα,nα,m、n是异面直线,那么n与α相交;
④若α∩β=m,n∥m,且nα,nβ,则n∥ α且n∥ β.
其中正确的命题是[     ]
A.①②
B.②③
C.③④
D.①④
题型:山东省月考题难度:| 查看答案
如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分别为PA、BC的中点,且PD=AD=,CD=1
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD;
(3)求三棱锥P﹣ABC的体积.
题型:山东省月考题难度:| 查看答案
如图所示,四棱锥P﹣ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点. (1)求证:平面PDE⊥平面PAC;
(2)求直线PC与平面PDE所成角的正弦值;
(3)求点B到平面PDE的距离.
题型:四川省月考题难度:| 查看答案
如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E,F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)求证:平面PCE⊥平面PCD;
(Ⅲ)求二面角F﹣EC﹣D的大小.
题型:天津月考题难度:| 查看答案
如图所示,四棱锥P﹣ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(1)求证:平面PDE⊥平面PAC;
(2)求直线PC与平面PDE所成角的正弦值;
(3)求点B到平面PDE的距离.
题型:四川省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.