当前位置:高中试题 > 数学试题 > 面面垂直 > 如图所示,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面...
题目
题型:不详难度:来源:
如图所示,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求BE与平面PAC所成的角.
答案
(1)证明:取PD的中点为M,连接ME,MF,
∵E是PC的中点,∴ME是△PCD的中位线.
∴MECD,ME=
1
2
CD.
又∵F是AB的中点,且由于ABCD是菱形,
∴ABCD,AB=CD,∴MEFB,且ME=FB.
∴四边形MEBF是平行四边形,∴BEMF.
∵BE⊄平面PDF,MF⊂平面PDF,
∴BE平面PDF.
(2)证明:∵PA⊥平面ABCD,DF⊂平面ABCD,
∴DF⊥PA.连接BD,
∵底面ABCD是菱形,∠BAD=60°,∴△DAB为正三角形.
∵F是AB的中点,∴DF⊥AB.
∵PA∩AB=A,∴DF⊥平面PAB.
∵DF⊂平面PDF,∴平面PDF⊥平面PAB.
(3)连结BD交AC于O,∵底面ABCD是菱形,∴AC⊥BD,
∵PA⊥平面ABCD,∴PA⊥BD,∴BD⊥平面PAC.
∴OB⊥OE,即OE是BE在平面PAC上的射影.
∴∠BEO是BE与平面PAC所成的角.
∵O,E,分别是中点,∴OE=
1
2
AP=1,OD=
1
2
BD
=
1
2
AB
=1,
∴Rt△BOE为等腰直角三角形,∴∠BEO=45°,
即BE与平面PAC所成的角的大小为45°.
核心考点
试题【如图所示,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面】;主要考察你对面面垂直等知识点的理解。[详细]
举一反三
如图,在正三棱柱(底面为正三角形的直棱柱)ABC-A1B1C1中,F是A1C1的中点.
(1)求证:BC1平面AFB1
(2)求证:平面AFB1⊥平面ACC1A1
题型:不详难度:| 查看答案
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱锥P-ABC的体积.
题型:不详难度:| 查看答案
在直四棱住ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F、G分别是棱B1B、D1D、DA的中点.
(1)求证:平面AD1E平面BGF;
(2)求证:平面AEC⊥面AD1E.
题型:不详难度:| 查看答案
在长方形AA1B1B中,AB=2AA1,C,C1分别AB,A1B1是的中点(如图1).将此长方形沿CC1对折,使平面AA1C1C⊥平面CC1B1B(如图2),已知D,E分别是A1B1,CC1的中点.
(1)求证:C1D平面A1BE;
(2)求证:平面A1BE⊥平面AA1B1B.
题型:不详难度:| 查看答案
如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA平面BDE;
(2)求证:平面BED⊥平面SAC.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.