当前位置:高中试题 > 数学试题 > 线面垂直 > 如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2。(...
题目
题型:高考真题难度:来源:
如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2。
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由。
答案

解:(1)∵D,E分别为AC,AB的中点,
∴DE∥BC,
又DE?平面A1CB,
∴DE∥平面A1CB。
(2)由已知得AC⊥BC且DE∥BC,
∴DE⊥AC,
∴DE⊥A1D,
又DE⊥CD,
∴DE⊥平面A1DC,而A1F?平面A1DC,
∴DE⊥A1F,又A1F⊥CD,
∴A1F⊥平面BCDE,
∴A1F⊥BE。
(3)线段A1B上存在点Q,使A1C⊥平面DEQ
理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC
∵DE∥BC,
∴DE∥PQ
∴平面DEQ即为平面DEP
由(2)知DE⊥平面A1DC,
∴DE⊥A1C,
又∵P是等腰三角形DA1C底边A1C的中点,
∴A1C⊥DP,
∴A1C⊥平面DEP,
从而A1C⊥平面DEQ,
故线段A1B上存在点Q,使A1C⊥平面DEQ。

核心考点
试题【如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2。(】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
如图5 ,在四棱锥P-ABCD 中,PA⊥平面ABCD ,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD 的中点。
(1)证明:CD⊥平面PAE ;
(2)若直线PB 与平面PAE 所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。
题型:高考真题难度:| 查看答案
如图所示,在正三棱柱ABC-A1B1C1中,底面边长和侧棱长都是2 ,D 是侧棱CC1上任意一点,E 是A1B1的中点。      
(1)求证:A1B1∥平面ABD ;      
(2)求证:AB⊥CE ;      
(3)求三棱锥C-ABE的体积。
题型:模拟题难度:| 查看答案
如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=2AD.
(1)求证:AB⊥PD;
(2)在线段PB上是否存在一点E,使AE∥平面PCD,若存在,指出点E的位置并加以证明;若不存在,请说明理由.
题型:新疆维吾尔自治区期末题难度:| 查看答案
如图,在四棱锥P﹣ABCD中,CD∥AB,AD⊥AB,BC⊥PC, .
(1)求证:PA⊥BC
(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由.
题型:江苏省月考题难度:| 查看答案
棱长为2的正方体ABCD﹣A1B1C1D1中,E为棱C1D1的中点,F为棱BC的中点
(1)求证AE⊥DA1
(2)求在线段AA1上找一点G,使AE⊥面DFG.
题型:黑龙江省期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.