当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 在四面体ABCD中,AB=AD=,BC=CD=3,AC=,BD=2.(1)平面ABD与平面BCD是否垂直?证明你的结论;(2)求二面角A-CD-B的正切值。...
题目
题型:不详难度:来源:
在四面体ABCD中,AB=AD=,BC=CD=3,AC=,BD=2.
(1)平面ABD与平面BCD是否垂直?证明你的结论;(2)求二面角A-CD-B的正切值。
答案
(1)垂直;(2)二面角A-CD-B的正切值为
解析
如图,(1)垂直。证明如下:设BD的中点为E,连AE,CE。
∵AB=AD∴AE⊥BD。同理CE⊥BD。
∴AE=
∵AC=,∴AC2=AE2+CE2∴∠AEC=90°即AE⊥EC
∴AE⊥平面BCD∵AE平面ABD∴平面ABD⊥平面BCD
(2)作EF⊥CD于F,连结AF。∵AE⊥平面BCD∴AF⊥CD
∴∠AFE就是二面角A-CD-B的平面角,
即二面角A-CD-B的正切值为

核心考点
试题【在四面体ABCD中,AB=AD=,BC=CD=3,AC=,BD=2.(1)平面ABD与平面BCD是否垂直?证明你的结论;(2)求二面角A-CD-B的正切值。】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(本小题满分13分)如图,四面体ABCD中,O是BD的中点,
ABD和BCD均为等边三角形,AB=2,AC=
(1)求证:AO⊥平面BCD;(2)求二面角A—BC—D的大小;
(3)求O点到平面ACD的距离。
题型:不详难度:| 查看答案
(本小题满分13分)如图甲,直角梯形中,,点分别在上,且,现将梯形沿折起,使平面与平面垂直(如图乙).

(Ⅰ)求证:平面
(Ⅱ)当的长为何值时,
二面角的大小为
题型:不详难度:| 查看答案
在直三棱柱中,平面,其垂足落在直线上.
(Ⅰ)求证:
(Ⅱ)若的中点,求三棱锥的体积.
题型:不详难度:| 查看答案
已知直角三角形的两直角边长分别为3cm和4cm,则以斜边为轴旋转一周所得几何体的表面积为                 
题型:不详难度:| 查看答案
如图,在直四棱柱中,底面ABCD为等腰梯形,AB∥CD,AB="4,BC=CD=2," AA="2, " E、E、F分别是棱AD、AA、AB的中点。               
(Ⅰ)证明:直线∥平面;          
(Ⅱ)求二面角的余弦值
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.