当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,正三棱锥A-BCD中,在棱上,在棱上.并且(0<l<+∞),设a为异面直线与所成的角,b 为异面直线EF与BD所成的角,则a+b的值是A.B.C.D.与的...
题目
题型:不详难度:来源:
如图,正三棱锥A-BCD中,在棱上,在棱上.并且(0<l<+∞),设a为异面直线所成的角,b 为异面直线EFBD所成的角,则ab的值是
A.B.C.D.与的值有关

答案
C
解析

核心考点
试题【如图,正三棱锥A-BCD中,在棱上,在棱上.并且(0<l<+∞),设a为异面直线与所成的角,b 为异面直线EF与BD所成的角,则a+b的值是A.B.C.D.与的】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图,在正三棱锥中,底面边长是2,D是BC的中点,M在BB1上,且.

(1)求证:;      
(2)求三棱锥的体积;
(3)求二面角的余弦值.
题型:不详难度:| 查看答案
(本小题满分13分)
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.
(Ⅰ)求证: AE∥平面DCF;
(Ⅱ)若,且二面角A—EF—C的大小为,求的长。
题型:不详难度:| 查看答案
表面积为的球面上有三点ABC,∠ACB=60°,AB,则球心到截面ABC的距离及BC两点间球面距离最大值分别为                                  (  )
A.3,B.C.D.3,

题型:不详难度:| 查看答案
下列命题中正确命题的个数是                                                              (  )
①经过空间一点一定可作一平面与两异面直线都平行;
②已知平面,直线ab,若,则
③有两个侧面垂直于底面的四棱柱为直四棱柱;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
⑥底面是等边三角形,∠APB=∠BPC=∠CPA,则三棱锥PABC是正三棱锥.
A.0B.1C.2D.3

题型:不详难度:| 查看答案
如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD是梯形BCAD,∠DAB=90°,ABBB1=4,BC=3,AD=5,AE=3,FG分别为CDC1D1的中点.

(1)求证:EF⊥平面BB1G
(2)求二面角EBB1G的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.