当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,与都是边长为2的正三角形,平面平面,平面,.(1)求点到平面的距离;(2)求平面与平面所成二面角的正弦值....
题目
题型:不详难度:来源:

如图,都是边长为2的正三角形,
平面平面平面.
(1)求点到平面的距离;
(2)求平面与平面所成二面角的正弦值.
答案

解析
解法一:(1)等体积法.


CD中点O,连OBOM,则OB=OM=OBCDMOCD
又平面平面,则MO⊥平面,所以MOABMO∥平面ABCMO到平面ABC的距离相等.
OHBCH,连MH,则MHBC
求得OH=OC=
MH=
设点到平面的距离为d,由

解得
(2)延长AMBO相交于E,连CEDECE是平面与平面的交线.
由(1)知,OBE的中点,则BCED是菱形.
BFECF,连AF,则AFEC,∠AFB就是二面角A-EC-B的平面角,设为.
因为∠BCE=120°,所以∠BCF=60°.

.
则所求二面角的正弦值为
解法二:取CD中点O,连OBOM,则
OBCDOMCD.又平面平面,则MO⊥平面.
O为原点,直线OCBOOMx轴、y轴、z轴,建立空间直角坐标系如图.OB=OM=,则各点坐标分别为C(1,0,0),M(0,0,),B(0,,0),A(0,-).
(1)设是平面MBC的法向量,则,.


,则

(2).
设平面ACM的法向量为,由解得,取.又平面BCD的法向量为.
所以
设所求二面角为,则.
核心考点
试题【如图,与都是边长为2的正三角形,平面平面,平面,.(1)求点到平面的距离;(2)求平面与平面所成二面角的正弦值.】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M1
 
题型:不详难度:| 查看答案
如题(20)图,四棱锥中,底面为矩形,底面,点是棱的中点.
(Ⅰ)证明:平面
(Ⅱ)若,求二面角的平面角的余弦值.

题型:不详难度:| 查看答案
如图,直三棱柱中,的中点,上的一点,

(Ⅰ)证明:为异面直线的公垂线;
(Ⅱ)设异面直线的夹角为45°,求二面角的大小.
题型:不详难度:| 查看答案
如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2DC,F是BE的中点,求证:(1)  FD∥平面ABC;     (2)FD⊥平面ABE;      (3)  AF⊥平面EDB.

题型:不详难度:| 查看答案
如图,在四面体ABOC中, , 且

(Ⅰ)设为的中点,证明:在上存在一点,使,并计算的值;
(Ⅱ)求二面角的平面角的余弦值。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.