当前位置:高中试题 > 数学试题 > 解三角形应用 > 在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.⑴ 若cosA=-,求cosC的值; ⑵ 若AC=,BC=5,求△ABC的面积....
题目
题型:不详难度:来源:
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.
⑴ 若cosA=-,求cosC的值; ⑵ 若AC=,BC=5,求△ABC的面积.
答案
         ⑵
解析
第一问中sinB=, sinA=
cosC=cos(180°-A-B)=-cos(A+B)                =sinA.sinB-cosA·cosB
×-(-
第二问中,由-2AB×BC×cosB得 10=+25-8AB
解得AB=5或AB=3综合得△ABC的面积为
解:⑴ sinB=, sinA=,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B)                  ……………………3分
=sinA.sinB-cosA·cosB                            ……………………4分
×-(-                   ……………………6分
⑵ 由-2AB×BC×cosB得 10=+25-8AB   ………………7分
解得AB=5或AB=3,                               ……………………9分
若AB=5,则S△ABCAB×BC×sinB=×5×5×    ………………10分
若AB=3,则S△ABCAB×BC×sinB=×5×3×……………………11分
综合得△ABC的面积为
核心考点
试题【在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.⑴ 若cosA=-,求cosC的值; ⑵ 若AC=,BC=5,求△ABC的面积.】;主要考察你对解三角形应用等知识点的理解。[详细]
举一反三
在200m高的山顶上,测得山下一塔的塔顶和塔底的俯角分别为30o和60o,则塔高为 (    ) 
A.B.C.D.

题型:不详难度:| 查看答案
是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为(      )
A.B.C.D.

题型:不详难度:| 查看答案
已知分别为三个内角的对边,
(1)求   (2)若的面积为;求.
题型:不详难度:| 查看答案
已知分别为三个内角,,的对边,.
(Ⅰ)求
(Ⅱ)若=2,的面积为,求.
【命题意图】本题主要考查正余弦定理应用,是简单题.
题型:不详难度:| 查看答案
(本题满分14分) 在中,角所对的边分别为,已知成等比数列,且
(Ⅰ)求角的大小;
(Ⅱ)若,求函数的值域.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.